1
|
Ledger EVK, Edwards AM. Host-induced cell wall remodeling impairs opsonophagocytosis of Staphylococcus aureus by neutrophils. mBio 2024; 15:e0164324. [PMID: 39041819 PMCID: PMC11323798 DOI: 10.1128/mbio.01643-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
The bacterial pathogen Staphylococcus aureus responds to the host environment by increasing the thickness of its cell wall. However, the impact of cell wall thickening on susceptibility to host defenses is unclear. Using bacteria incubated in human serum, we show that host-induced increases in cell wall thickness led to a reduction in the exposure of bound antibody and complement and a corresponding reduction in phagocytosis and killing by neutrophils. The exposure of opsonins bound to protein antigens or lipoteichoic acid (LTA) was most significantly reduced, while opsonization by IgG against wall teichoic acid or peptidoglycan was largely unaffected. Partial digestion of accumulated cell wall using the enzyme lysostaphin restored opsonin exposure and promoted phagocytosis and killing. Concordantly, the antibiotic fosfomycin inhibited cell wall remodeling and maintained the full susceptibility of S. aureus to opsonophagocytic killing by neutrophils. These findings reveal that host-induced changes to the S. aureus cell wall reduce the ability of the immune system to detect and kill this pathogen through reduced exposure of protein- and LTA-bound opsonins. IMPORTANCE Understanding how bacteria adapt to the host environment is critical in determining fundamental mechanisms of immune evasion, pathogenesis, and the identification of targets for new therapeutic approaches. Previous work demonstrated that Staphylococcus aureus remodels its cell envelope in response to host factors and we hypothesized that this may affect recognition by antibodies and thus killing by immune cells. As expected, incubation of S. aureus in human serum resulted in rapid binding of antibodies. However, as bacteria adapted to the serum, the increase in cell wall thickness resulted in a significant reduction in exposure of bound antibodies. This reduced antibody exposure, in turn, led to reduced killing by human neutrophils. Importantly, while antibodies bound to some cell surface structures became obscured, this was not the case for those bound to wall teichoic acid, which may have important implications for vaccine design.
Collapse
Affiliation(s)
- Elizabeth V. K. Ledger
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Andrew M. Edwards
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Chan JYH, Clow F, Pearson V, Langley RJ, Fraser JD, Radcliff FJ. Feasibility of using a combination of staphylococcal superantigen-like proteins 3, 7 and 11 in a fusion vaccine for Staphylococcus aureus. Immunol Cell Biol 2024; 102:365-380. [PMID: 38572664 DOI: 10.1111/imcb.12745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Staphylococcus aureus is a significant bacterial pathogen in both community and hospital settings, and the escalation of antimicrobial-resistant strains is of immense global concern. Vaccination is an inviting long-term strategy to curb staphylococcal disease, but identification of an effective vaccine has proved to be challenging. Three well-characterized, ubiquitous, secreted immune evasion factors from the staphylococcal superantigen-like (SSL) protein family were selected for the development of a vaccine. Wild-type SSL3, 7 and 11, which inhibit signaling through Toll-like receptor 2, cleavage of complement component 5 and neutrophil function, respectively, were successfully combined into a stable, active fusion protein (PolySSL7311). Vaccination of mice with an attenuated form of the PolySSL7311 protein stimulated significantly elevated specific immunoglobulin G and splenocyte proliferation responses to each component relative to adjuvant-only controls. Vaccination with PolySSL7311, but not a mixture of the individual proteins, led to a > 102 reduction in S. aureus tissue burden compared with controls after peritoneal challenge. Comparable antibody responses were elicited after coadministration of the vaccine in either AddaVax (an analog of MF59) or an Alum-based adjuvant; but only AddaVax conferred a significant reduction in bacterial load, aligning with other studies that suggest both cellular and humoral immune responses are necessary for protective immunity to S. aureus. Anti-sera from mice immunized with PolySSL7311, but not individual proteins, partially neutralized the functional activities of SSL7. This study confirms the importance of these SSLs for the survival of S. aureus in vivo and suggests that PolySSL7311 is a promising vaccine candidate.
Collapse
Affiliation(s)
- Janlin Ying Hui Chan
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Fiona Clow
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Victoria Pearson
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ries J Langley
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - John D Fraser
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Fiona J Radcliff
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Yan J, Nielsen TB, Lu P, Talyansky Y, Slarve M, Reza H, Novakovic B, Netea MG, Keller AE, Warren T, DiGiandomenico A, Sellman BR, Luna BM, Spellberg B. A protein-free vaccine stimulates innate immunity and protects against nosocomial pathogens. Sci Transl Med 2023; 15:eadf9556. [PMID: 37792959 PMCID: PMC10947341 DOI: 10.1126/scitranslmed.adf9556] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/15/2023] [Indexed: 10/06/2023]
Abstract
Traditional vaccines are difficult to deploy against the diverse antimicrobial-resistant, nosocomial pathogens that cause health care-associated infections. We developed a protein-free vaccine composed of aluminum hydroxide, monophosphoryl lipid A, and fungal mannan that improved survival and reduced bacterial burden of mice with invasive blood or lung infections caused by methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, extended-spectrum beta-lactamase-expressing Escherichia coli, and carbapenem-resistant strains of Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The vaccine also conferred protection against the fungi Rhizopus delemar and Candida albicans. Efficacy was apparent by 24 hours and lasted for up to 28 days after a single vaccine dose, with a second dose restoring efficacy. The vaccine acted through stimulation of the innate, rather than the adaptive, immune system, as demonstrated by efficacy in the absence of lymphocytes that were abrogated by macrophage depletion. A role for macrophages was further supported by the finding that vaccination induced macrophage epigenetic alterations that modulated phagocytosis and the inflammatory response to infection. Together, these data show that this protein-free vaccine is a promising strategy to prevent deadly antimicrobial-resistant health care-associated infections.
Collapse
Affiliation(s)
- Jun Yan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Travis B. Nielsen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- UC San Diego School of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Peggy Lu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuli Talyansky
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Matt Slarve
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hernan Reza
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Boris Novakovic
- Murdoch Children’s Research Institute and Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Ashley E. Keller
- AstraZeneca Inc., Early Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Troy Warren
- AstraZeneca Inc., Early Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Antonio DiGiandomenico
- AstraZeneca Inc., Early Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Bret R. Sellman
- AstraZeneca Inc., Early Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Brian M. Luna
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brad Spellberg
- Los Angeles General Medical Center, Los Angeles, CA 90033, USA
| |
Collapse
|
4
|
Chatterjee R, Mahapatra SR, Dey J, Raj Takur K, Raina V, Misra N, Suar M. An immunoinformatics and structural vaccinology study to design a multi-epitope vaccine against Staphylococcus aureus infection. J Mol Recognit 2023; 36:e3007. [PMID: 36700877 DOI: 10.1002/jmr.3007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/29/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Staphylococcus aureus has been widely reported to be majorly responsible for causing nosocomial infections worldwide. Due to an increase in antibiotic-resistant strains, the development of an effective vaccine against the bacteria is the most viable alternative. Therefore, in the current work, an effort has been undertaken to develop a novel peptide-based vaccine construct against S aureus that can potentially evoke the B and T cell immune responses. The fibronectin-binding proteins are an attractive target as they play a prominent role in bacterial adherence and host cell invasion and are also well conserved among rapidly mutating pathogens. Therefore, highly immunogenic linear B lymphocytes (LBL), cytotoxic T lymphocytes (CTL), and helper T lymphocytes (HTL) epitopes were identified from the antigenic fibronectin-binding proteins A and B (FnBPA and FnBPB) of S aureus using immunoinformatics approaches. The selected peptides were confirmed to be non-allergenic, non-toxic, and with a high binding affinity to the majority of human leukocyte antigens (HLA) alleles. Consequently, the multi-peptide vaccine construct was developed by fusing the screened epitopes (three LBL, five CTL, and two HTL) together with the suitable adjuvant and linkers. In addition, the tertiary conformation of the peptide construct was modeled and later docked to the Toll-like receptor 2. Subsequently, a molecular dynamics simulation of 100 ns was employed to corroborate the stability of the designed vaccine-receptor complex. Besides exhibiting high immunogenicity and conformational stability, the developed vaccine was observed to possess wide population coverage of 99.51% worldwide. Additional in vivo and in vitro validation studies would certainly corroborate the designed vaccine construct to have improved prophylactic efficacy against S aureus.
Collapse
Affiliation(s)
- Rahul Chatterjee
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Kiran Raj Takur
- Department of Biotechnology & Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, India
| | - Vishakha Raina
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| |
Collapse
|
5
|
Frost I, Sati H, Garcia-Vello P, Hasso-Agopsowicz M, Lienhardt C, Gigante V, Beyer P. The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline. THE LANCET. MICROBE 2023; 4:e113-e125. [PMID: 36528040 PMCID: PMC9892012 DOI: 10.1016/s2666-5247(22)00303-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/10/2022] [Accepted: 10/13/2022] [Indexed: 12/23/2022]
Abstract
Vaccines can be highly effective tools in combating antimicrobial resistance as they reduce infections caused by antibiotic-resistant bacteria and antibiotic consumption associated with disease. This Review looks at vaccine candidates that are in development against pathogens on the 2017 WHO bacterial priority pathogen list, in addition to Clostridioides difficile and Mycobacterium tuberculosis. There were 94 active preclinical vaccine candidates and 61 active development vaccine candidates. We classified the included pathogens into the following four groups: Group A consists of pathogens for which vaccines already exist-ie, Salmonella enterica serotype Typhi, Streptococcus pneumoniae, Haemophilus influenzae type b, and M tuberculosis. Group B consists of pathogens with vaccines in advanced clinical development-ie, extra-intestinal pathogenic Escherichia coli, Salmonella enterica serotype Paratyphi A, Neisseria gonorrhoeae, and C difficile. Group C consists of pathogens with vaccines in early phases of clinical development-ie, enterotoxigenic E coli, Klebsiella pneumoniae, non-typhoidal Salmonella, Shigella spp, and Campylobacter spp. Finally, group D includes pathogens with either no candidates in clinical development or low development feasibility-ie, Pseudomonas aeruginosa, Acinetobacter baumannii, Staphylococcus aureus, Helicobacter pylori, Enterococcus faecium, and Enterobacter spp. Vaccines are already important tools in reducing antimicrobial resistance and future development will provide further opportunities to optimise the use of vaccines against resistance.
Collapse
Affiliation(s)
- Isabel Frost
- World Health Organization, Geneva, Switzerland; Department of Infectious Disease, Imperial College London, London, UK.
| | - Hatim Sati
- World Health Organization, Geneva, Switzerland
| | | | | | - Christian Lienhardt
- Unité Mixte Internationale 233 IRD-U1175 INSERM, Université de Montpellier, Institut de Recherche pour le Développement, Montpellier, France; Epidemiology and Population Health, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Peter Beyer
- World Health Organization, Geneva, Switzerland; Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| |
Collapse
|
6
|
Development of a Conserved Chimeric Vaccine for Induction of Strong Immune Response against Staphylococcus aureus Using Immunoinformatics Approaches. Vaccines (Basel) 2021; 9:vaccines9091038. [PMID: 34579274 PMCID: PMC8470666 DOI: 10.3390/vaccines9091038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus aureus is one of the most notorious Gram-positive bacteria with a very high mortality rate. The WHO has listed S. aureus as one of the ESKAPE pathogens requiring urgent research and development efforts to fight against it. Yet there is a major layback in the advancement of effective vaccines against this multidrug-resistant pathogen. SdrD and SdrE proteins are attractive immunogen candidates as they are conserved among all the strains and contribute specifically to bacterial adherence to the host cells. Furthermore, these proteins are predicted to be highly antigenic and essential for pathogen survival. Therefore, in this study, using the immunoinformatics approach, a novel vaccine candidate was constructed using highly immunogenic conserved T-cell and B-cell epitopes along with specific linkers, adjuvants, and consequently modeled for docking with human Toll-like receptor 2. Additionally, physicochemical properties, secondary structure, disulphide engineering, and population coverage analysis were also analyzed for the vaccine. The constructed vaccine showed good results of worldwide population coverage and a promising immune response. For evaluation of the stability of the vaccine-TLR-2 docked complex, a molecular dynamics simulation was performed. The constructed vaccine was subjected to in silico immune simulations by C-ImmSim and Immune simulation significantly provided high levels of immunoglobulins, T-helper cells, T-cytotoxic cells, and INF-γ. Lastly, upon cloning, the vaccine protein was reverse transcribed into a DNA sequence and cloned into a pET28a (+) vector to ensure translational potency and microbial expression. The overall results of the study showed that the designed novel chimeric vaccine can simultaneously elicit humoral and cell-mediated immune responses and is a reliable construct for subsequent in vivo and in vitro studies against the pathogen.
Collapse
|
7
|
Suresh MK, Vasudevan AK, Biswas L, Biswas R. Protective efficacy of Alum adjuvanted Amidase protein vaccine against Staphylococcus aureus infection in multiple mouse models. J Appl Microbiol 2021; 132:1422-1434. [PMID: 34487603 DOI: 10.1111/jam.15291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022]
Abstract
AIMS Staphylococcus aureus is an opportunistic pathogen of humans. No commercial vaccine is available to combat S. aureus infections. In this study, we have investigated the protective immune response generated by S. aureus non-covalently associated cell wall surface protein N-acetylmuramoyl-L-alanine amidase (AM) in combination with Alum (Al) and heat-killed S. aureus (hkSA) using murine models. METHODS AND RESULTS BALB/c mice were immunized with increasing concentrations of AM antigen or hkSA to determine their optimum concentration for vaccination. Fifty micrograms of AM and hkSA each were found to generate maximum anti-AM IgG antibody production. BALB/c mice were immunized next with 50 µg of AM, 50 µg of hKSA and 1 mg Al vaccine formulation. Vaccine efficacy was validated by challenging immunized BALB/c mice with S. aureus Newman and three clinical methicillin-resistant S. aureus strains. AM-hkSA-Al-immunized mice generated high anti-AM IgG antibody response with IgG1 and IgG2b as the predominant immunoglobulin subtypes. Increased survival (60%-90%) with decreased clinical disease symptoms was observed in the vaccinated BALB/c mice group. A significantly lower bacterial load and decreased kidney abscess formation was observed following the challenge with S. aureus in the vaccinated BALB/c mice group. Furthermore, the efficacy of AM-hkSA-Al vaccine was also validated using C57 BL/6 and Swiss albino mice. CONCLUSIONS Using murine infection models, we have demonstrated that AM-hkSA-Al vaccine would be effective in preventing S. aureus infections. SIGNIFICANCE AND IMPACT OF STUDY AM-hkSA-Al vaccine elicited strong immune response and may be considered for future vaccine design against S. aureus infections.
Collapse
Affiliation(s)
- Maneesha K Suresh
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Anil Kumar Vasudevan
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, AIMS - Ponekkara, Cochin, India
| | - Lalitha Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Raja Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
8
|
Dey J, Mahapatra SR, Singh P, Patro S, Kushwaha GS, Misra N, Suar M. B and T cell epitope-based peptides predicted from clumping factor protein of Staphylococcus aureus as vaccine targets. Microb Pathog 2021; 160:105171. [PMID: 34481860 DOI: 10.1016/j.micpath.2021.105171] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus infection is emerging as a global threat because of the highly debilitating nature of the associated disease's unprecedented magnitude of its spread and growing global resistance to antimicrobial medicines. Recently WHO has categorized these bacteria under the high global priority pathogen list and is one of the six nosocomial pathogens termed as ESKAPE pathogens which have emerged as a serious threat to public health worldwide. The development of a specific vaccine can stimulate an optimal antibody response, thus providing immunity against it. Therefore, in the present study efforts have been made to identify potential vaccine candidates from the Clumping factor surface proteins (ClfA and ClfB) of S. aureus. Employing the immunoinformatics approach, fourteen antigenic peptides including T-cell, B-cell epitopes were identified which were non-toxic, non-allergenic, high antigenicity, strong binding efficiency with commonly occurring MHC alleles. Consequently, a multi-epitope vaccine chimera was designed by connecting these epitopes with suitable linkers an adjuvant to enhance immunogenicity. Further, homology modeling and molecular docking were performed to construct the three-dimensional structure of the vaccine and study the interaction between the modeled structure and immune receptor (TLR-2) present on lymphocyte cells. Consequently, molecular dynamics simulation for 100 ns period confirmed the stability of the interaction and reliability of the structure for further analysis. Finally, codon optimization and in silico cloning were employed to ensure the successful expression of the vaccine candidate. As the targeted protein is highly antigenic and conserved, hence the designed novel vaccine construct holds potential against emerging multi-drug-resistant organisms.
Collapse
Affiliation(s)
- Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India
| | - Pratima Singh
- Kalinga Institute of Medical Sciences, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Swadheena Patro
- Kalinga Institute of Dental Sciences, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Gajraj Singh Kushwaha
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India; Transcription Regulation group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India; KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India; KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| |
Collapse
|
9
|
Clegg J, Soldaini E, McLoughlin RM, Rittenhouse S, Bagnoli F, Phogat S. Staphylococcus aureus Vaccine Research and Development: The Past, Present and Future, Including Novel Therapeutic Strategies. Front Immunol 2021; 12:705360. [PMID: 34305945 PMCID: PMC8294057 DOI: 10.3389/fimmu.2021.705360] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the most important human pathogens worldwide. Its high antibiotic resistance profile reinforces the need for new interventions like vaccines in addition to new antibiotics. Vaccine development efforts against S. aureus have failed so far however, the findings from these human clinical and non-clinical studies provide potential insight for such failures. Currently, research is focusing on identifying novel vaccine formulations able to elicit potent humoral and cellular immune responses. Translational science studies are attempting to discover correlates of protection using animal models as well as in vitro and ex vivo models assessing efficacy of vaccine candidates. Several new vaccine candidates are being tested in human clinical trials in a variety of target populations. In addition to vaccines, bacteriophages, monoclonal antibodies, centyrins and new classes of antibiotics are being developed. Some of these have been tested in humans with encouraging results. The complexity of the diseases and the range of the target populations affected by this pathogen will require a multipronged approach using different interventions, which will be discussed in this review.
Collapse
Affiliation(s)
- Jonah Clegg
- GSK, Siena, Italy
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Rachel M. McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
10
|
Millar EV, Bennett JW, Barin B, Carey PM, Law NN, English CE, Schwartz MM, Cochrane T, Ellis MW, Tribble DR, Timothy Cooke M, Hennessey JP. Safety, immunogenicity, and efficacy of NDV-3A against Staphylococcus aureus colonization: A phase 2 vaccine trial among US Army Infantry trainees. Vaccine 2021; 39:3179-3188. [PMID: 33962841 PMCID: PMC10430023 DOI: 10.1016/j.vaccine.2021.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Military trainees are at increased risk for Staphylococcus aureus colonization and infection. Disease prevention strategies are needed, but a S. aureus vaccine does not currently exist. METHODS We enrolled US Army Infantry trainees (Fort Benning, GA) in a phase 2, randomized, double-blind, placebo-controlled trial of NDV-3A, a vaccine containing a recombinant adhesin/invasion protein of Candida albicans that has structural similarity to the S. aureus protein clumping factor A. Study participants received one intramuscular dose of NDV-3A or placebo (adjuvant alone) within 72 h of arrival on base. Longitudinal nasal and oral (throat) swabs were collected throughout the 14-week Infantry training cycle. Safety, immunogenicity, and efficacy of NDV-3A against S. aureus nasal / oral acquisition were the endpoints. RESULTS The NDV-3A candidate had minimal reactogenicity and elicited robust antigen-specific B- and T-cell responses. During the 56-day post-vaccination period, there was no difference in the incidence of S. aureus nasal acquisition between those who were randomized to receive NDV-3A vs. placebo (25.6% vs. 29.1%; vaccine efficacy [VE]: 12.1%; p = 0.31). In time-to-event analysis, there was no difference between study groups with respect to the S. aureus colonization-free interval (VE: 13%; p = 0.29). Similarly, the efficacy of NDV-3A against S. aureus oral acquisition was poor (VE: 2.4%; p = 0.52). CONCLUSIONS A single dose of NDV-3A did not prevent nasal nor oral acquisition of S. aureus in a population of military trainees at high risk for colonization.
Collapse
Affiliation(s)
- Eugene V Millar
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States.
| | - Jason W Bennett
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Burc Barin
- The Emmes Company, Rockville, MD, United States
| | - Patrick M Carey
- Benning Martin Army Community Hospital, Fort Benning, GA, United States
| | - Natasha N Law
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States; Benning Martin Army Community Hospital, Fort Benning, GA, United States
| | - Caroline E English
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | | | | | - Michael W Ellis
- University of Toledo Medical Center, Toledo, OH, United States
| | - David R Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | | |
Collapse
|
11
|
Identification of CD4 + T cell epitopes from Staphylococcus aureus secretome using immunoinformatic prediction and molecular docking. BIOTECHNOLOGIA 2021; 102:43-54. [PMID: 36605712 PMCID: PMC9642919 DOI: 10.5114/bta.2021.103761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/25/2020] [Accepted: 10/23/2020] [Indexed: 01/09/2023] Open
Abstract
One major reason for the lack of clinical success of Staphylococcus aureus vaccine candidates is the inability of the antigens to develop a CD4+ T cell-mediated immune response. Hence, it is important to identify CD4+ T cell antigens from S. aureus. CD4+ T cells are activated following the presentation of epitopes derived from exogenous proteins on HLA class II molecules. Fifty-nine secretory proteins of S. aureus were analyzed computationally for the presence of HLA class II binding peptides. Fifteen-mer peptides were generated, and their binding to 26 HLA class II alleles was predicted. The structural feasibility of the peptides binding to HLA-II was studied using molecular docking. Of the 16,724 peptides generated, 6991 (41.8%) were predicted to bind to any one of the alleles with an IC50 value below 50 nM. Comparative sequence analysis revealed that only 545 of the strong binding peptides are non-self in the human system. Approximately 50% of the binding peptides were monoallele-specific. Moreover, approximately 95% of the predicted strong binding non-self peptides interacted with the binding groove of at least one HLA class II molecule with a glide score better than -10 kcal/mol. On the basis of the analysis of the strength of binding, non-self presentation in the human host, propensity to bind to a higher number of alleles, and energetically favorable interactions with HLA molecules, a set of 11 CD4+ T cell epitopes that can be used as vaccine candidates was identified.
Collapse
|
12
|
Clegg J, Soldaini E, Bagnoli F, McLoughlin RM. Targeting Skin-Resident Memory T Cells via Vaccination to Combat Staphylococcus aureus Infections. Trends Immunol 2020; 42:6-17. [PMID: 33309137 DOI: 10.1016/j.it.2020.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Tissue-resident memory T cells are important in adaptive immunity against many infections, rendering these cells attractive potential targets in vaccine development. Genetic and experimental evidence highlights the importance of cellular immunity in protection from Staphylococcus aureus skin infections, yet skin-resident memory T cells are, thus far, an untested component of immunity during such infections. Novel methods of generating and sampling vaccine-induced skin memory T cells are paralleled by discoveries of global, skin-wide immunosurveillance. We propose skin-resident memory CD4+ T cells as a potential missing link in the search for correlates of protection during S. aureus infections. A better appreciation of their phenotypes and functions could accelerate the development of preventive vaccines against this highly virulent and antibiotic-resistant pathogen.
Collapse
Affiliation(s)
- Jonah Clegg
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; GlaxoSmithKline, Siena, Italy
| | | | | | - Rachel M McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
13
|
Convergent Evolution of Neutralizing Antibodies to Staphylococcus aureus γ-Hemolysin C That Recognize an Immunodominant Primary Sequence-Dependent B-Cell Epitope. mBio 2020; 11:mBio.00460-20. [PMID: 32546616 PMCID: PMC7298706 DOI: 10.1128/mbio.00460-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus infection is a major public health threat in part due to the spread of antibiotic resistance and repeated failures to develop a protective vaccine. Infection is associated with production of virulence factors that include exotoxins that attack host barriers and cellular defenses, such as the leukocidin (Luk) family of bicomponent pore-forming toxins. To investigate the structural basis of antibody-mediated functional inactivation of Luk toxins, we generated a panel of murine monoclonal antibodies (MAbs) that neutralize host cell killing by the γ-hemolysin HlgCB. Staphylococcus aureus infection is a major public health threat in part due to the spread of antibiotic resistance and repeated failures to develop a protective vaccine. Infection is associated with production of virulence factors that include exotoxins that attack host barriers and cellular defenses, such as the leukocidin (Luk) family of bicomponent pore-forming toxins. To investigate the structural basis of antibody-mediated functional inactivation of Luk toxins, we generated a panel of murine monoclonal antibodies (MAbs) that neutralize host cell killing by the γ-hemolysin HlgCB. By biopanning these MAbs against a phage-display library of random Luk peptide fragments, we identified a small subregion within the rim domain of HlgC as the epitope for all the MAbs. Within the native holotoxin, this subregion folds into a conserved β-hairpin structure, with exposed key residues, His252 and Tyr253, required for antibody binding. On the basis of the phage-display results and molecular modeling, a 15-amino-acid synthetic peptide representing the minimal epitope on HlgC (HlgC241-255) was designed, and preincubation with this peptide blocked antibody-mediated HIgCB neutralization. Immunization of mice with HlgC241-255 or the homologous LukS246-260 subregion peptide elicited serum antibodies that specifically recognized the native holotoxin subunits. Furthermore, serum IgG from patients who were convalescent for invasive S. aureus infection showed neutralization of HlgCB toxin activity ex vivo, which recognized the immunodominant HlgC241-255 peptide and was dependent on His252 and Tyr253 residues. We have thus validated an efficient, rapid, and scalable experimental workflow for identification of immunodominant and immunogenic leukotoxin-neutralizing B-cell epitopes that can be exploited for new S. aureus-protective vaccines and immunotherapies.
Collapse
|