1
|
Yu F, Tan W, Chen Z, Shen X, Mo X, Mo X, He J, Deng Z, Wang J, Luo Z, Yang J. Nitidine chloride induces caspase 3/GSDME-dependent pyroptosis by inhibting PI3K/Akt pathway in lung cancer. Chin Med 2022; 17:115. [PMID: 36175965 PMCID: PMC9524076 DOI: 10.1186/s13020-022-00671-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/12/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND As the increasing mortality and incidence of lung cancer (LC), there is an urgent need to discover novel treatment agent. In this study, we aimed to investigate the anti-LC effects of nitidine chloride (NC), a small molecular compound extracted from Chinese herbal medicine, while detailing its underlying mechanisms. METHODS Cell viability was detected by MTT assays and five cell death inhibitors, including ferrostatin-1 (Fer-1), Z-VAD-FMK, necrostatin-1 (Nec-1), disulfiram (DSF) and IM-54 were used to explore the type of cell death induced by NC. The microscopic features of NC-induced pyroptosis were assessed by transmission electron microscopy (TEM) and the pyroptotic-related proteins such as caspase and gasdermin family, were examined by western blot. Network pharmacology was employed to predict the potential mechanisms of NC in lung cancer treatment. CETSA and DARTs were used to determine the activity of NC binding to targeted protein. Xenograft mice model was established to further investigate the inhibitory effect and mechanism of NC against LC. RESULTS The pyroptosis inhibitor (DSF) and apoptosis inhibitor (Z-VAD-FMK) but not IM-54, necrostatin-1, or Ferrostatin-1 rescued NC-induced cell death. Morphologically, H1688 and A549 cells treated with NC showed notably pyroptotic features, such as cell swelling and large bubbles emerging from the plasma membrane. Gasdermin E (GSDME) rather than GSDMC or GSDMD was cleaved in NC-treated H1688 and A549 cells with an increased cleavage of caspase 3. Combined with network pharmacology and molecule docking, PI3K/Akt signaling axis was predicted and was further verified by CETSA and DARTs assay. In addition, the activation of PI3K is able to rescue the pyroptosis induced by NC in vitro. In xenograft model of LC, NC significantly hindered the transduction of PI3K-AKT pathway, inducing pyroptosis of tumor. CONCLUSION Our data indicated that NC is a potential therapeutic agent for the treatment of LC via triggering GSDME-dependent pyroptosis.
Collapse
Affiliation(s)
- Fei Yu
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Weidan Tan
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Zhiquan Chen
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Xiaoju Shen
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Xiaoxiang Mo
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Xiaocheng Mo
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Jingchuan He
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Zhihua Deng
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Jie Wang
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Zhuo Luo
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Jie Yang
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| |
Collapse
|
2
|
Sanaei MJ, Razi S, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/Akt/mTOR pathway in lung cancer; oncogenic alterations, therapeutic opportunities, challenges, and a glance at the application of nanoparticles. Transl Oncol 2022; 18:101364. [PMID: 35168143 PMCID: PMC8850794 DOI: 10.1016/j.tranon.2022.101364] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/15/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the most common and deadliest human malignancies. The alterations of PI3K/Akt/mTOR pathway are related to lung cancer progression. PI3K axis regulates proliferation, apoptosis, metastasis, and EMT of lung cancer. Agents inhibiting components of PI3K axis diminish lung tumor growth and invasion. Low efficacy and off-target toxicity could be improved by nanoparticle application.
Lung cancer is the leading cause of cancer-related mortality worldwide. Although the PI3K/Akt/mTOR signaling pathway has recently been considered as one of the most altered molecular pathways in this malignancy, few articles reviewed the task. In this review, we aim to summarize the original data obtained from international research laboratories on the oncogenic alterations in each component of the PI3K/Akt/mTOR pathway in lung cancer. This review also responds to questions on how aberrant activation in this axis contributes to uncontrolled growth, drug resistance, sustained angiogenesis, as well as tissue invasion and metastatic spread. Besides, we provide a special focus on pharmacologic inhibitors of the PI3K/Akt/mTOR axis, either as monotherapy or in a combined-modal strategy, in the context of lung cancer. Despite promising outcomes achieved by using these agents, however, the presence of drug resistance as well as treatment-related adverse events is the other side of the coin. The last section allocates a general overview of the challenges associated with the inhibitors of the PI3K pathway in lung cancer patients. Finally, we comment on the future research aspects, especially in which nano-based drug delivery strategies might increase the efficacy of the therapy in this malignancy.
Collapse
|
3
|
Ngoi NYL, Choong C, Lee J, Bellot G, Wong ALA, Goh BC, Pervaiz S. Targeting Mitochondrial Apoptosis to Overcome Treatment Resistance in Cancer. Cancers (Basel) 2020; 12:E574. [PMID: 32131385 PMCID: PMC7139457 DOI: 10.3390/cancers12030574] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 01/09/2023] Open
Abstract
Deregulated cellular apoptosis is a hallmark of cancer and chemotherapy resistance. The B-cell lymphoma 2 (BCL-2) protein family members are sentinel molecules that regulate the mitochondrial apoptosis machinery and arbitrate cell fate through a delicate balance between pro- and anti-apoptotic factors. The recognition of the anti-apoptotic BCL2 gene as an oncogenic driver in hematological malignancies has directed attention toward unraveling the biological significance of each of the BCL-2 superfamily members in cancer progression and garnered interest in the targeting of apoptosis in cancer therapy. Accordingly, the approval of venetoclax (ABT-199), a small molecule BCL-2 inhibitor, in patients with chronic lymphocytic leukemia and acute myeloid leukemia has become the proverbial torchbearer for novel candidate drug approaches selectively targeting the BCL-2 superfamily. Despite the inspiring advances in this field, much remains to be learned regarding the optimal therapeutic context for BCL-2 targeting. Functional assays, such as through BH3 profiling, may facilitate prediction of treatment response, development of drug resistance and shed light on rational combinations of BCL-2 inhibitors with other branches of cancer therapy. This review summarizes the pathological roles of the BCL-2 family members in cancer, discusses the current landscape of their targeting in clinical practice, and highlights the potential for future therapeutic inroads in this important area.
Collapse
Affiliation(s)
- Natalie Yan Li Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore; (N.Y.L.N.); (C.C.); (J.L.); (A.L.W.); (B.C.G.)
| | - Clarice Choong
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore; (N.Y.L.N.); (C.C.); (J.L.); (A.L.W.); (B.C.G.)
| | - Joanne Lee
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore; (N.Y.L.N.); (C.C.); (J.L.); (A.L.W.); (B.C.G.)
| | - Gregory Bellot
- Department of Hand & Reconstructive Microsurgery, University Orthopedic, Hand & Reconstructive Microsurgery Cluster, National University Health System, Singapore 119228, Singapore;
| | - Andrea LA Wong
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore; (N.Y.L.N.); (C.C.); (J.L.); (A.L.W.); (B.C.G.)
- Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore; (N.Y.L.N.); (C.C.); (J.L.); (A.L.W.); (B.C.G.)
- Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
- National University Cancer Institute, National University Health System, Singapore 119228, Singapore
| |
Collapse
|
4
|
Huo C, Xiao C, She R, Liu T, Tian J, Dong H, Tian H, Hu Y. Chronic heat stress negatively affects the immune functions of both spleens and intestinal mucosal system in pigs through the inhibition of apoptosis. Microb Pathog 2019; 136:103672. [PMID: 31442574 DOI: 10.1016/j.micpath.2019.103672] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022]
Abstract
With the globe warming, chronic heat stress (CHS) has been considered to be a common hazard that could negatively affect pig's growth and reproduction performance. However, the effects of CHS on the immune functions of pigs were seldom reported, especially the cellular immune functions of intestinal mucosal system. In order to resolve this problem, a pig CHS model was built firstly and the effects of CHS on numbers of T cells in spleen and small intestines were observed. Exposure to a temperature of 39 °C, 4 h/d for 10d, the expression of heat stress protein 70 (HSP70) was increased dramatically. Under CHS condition, the numbers of CD3+ T cells were increased dramatically in both spleens and small intestines. Besides, the numbers of CD4+T cells and the value of CD4+/CD8+T cells in spleens were also significantly increased. The results highly revealed that CHS made the equilibrium state of immune function destroyed. Furthermore, CHS mainly promoted the expression of anti-apoptosis factor B cell lymphoma-2 (Bcl-2) and thus inhibited the apoptosis of lymphocytes in spleens and intestinal mucosa. This study demonstrates for the first time that CHS negatively affects the immune functions of both spleens and intestinal mucosal system in pigs through the inhibition of apoptosis. Our study can richer the data for study of mechanism of CHS and provide new knowledge for reference of making new strategy to control the disease induced by CHS.
Collapse
Affiliation(s)
- Caiyun Huo
- Department of Veterinary Pathology, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Chong Xiao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ruiping She
- Department of Veterinary Pathology, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Tianlong Liu
- Department of Veterinary Pathology, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Jijing Tian
- Department of Veterinary Pathology, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, PR China
| | - Haiyan Tian
- Department of Veterinary Pathology, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Yanxin Hu
- Department of Veterinary Pathology, College of Veterinary Medicine, China Agricultural University, Beijing, PR China.
| |
Collapse
|