1
|
Eichhorn C, Koeckerling D, Reddy RK, Ardissino M, Rogowski M, Coles B, Hunziker L, Greulich S, Shiri I, Frey N, Eckstein J, Windecker S, Kwong RY, Siontis GCM, Gräni C. Risk Stratification in Nonischemic Dilated Cardiomyopathy Using CMR Imaging: A Systematic Review and Meta-Analysis. JAMA 2024:2823869. [PMID: 39298146 PMCID: PMC11413760 DOI: 10.1001/jama.2024.13946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/25/2024] [Indexed: 09/25/2024]
Abstract
Importance Accurate risk stratification of nonischemic dilated cardiomyopathy (NIDCM) remains challenging. Objective To evaluate the association of cardiac magnetic resonance (CMR) imaging-derived measurements with clinical outcomes in NIDCM. Data Sources MEDLINE, Embase, Cochrane Library, and Web of Science Core Collection databases were systematically searched for articles from January 2005 to April 2023. Study Selection Prospective and retrospective nonrandomized diagnostic studies reporting on the association between CMR imaging-derived measurements and adverse clinical outcomes in NIDCM were deemed eligible. Data Extraction and Synthesis Prespecified items related to patient population, CMR imaging measurements, and clinical outcomes were extracted at the study level by 2 independent reviewers. Random-effects models were fitted using restricted maximum likelihood estimation and the method of Hartung, Knapp, Sidik, and Jonkman. Main Outcomes and Measures All-cause mortality, cardiovascular mortality, arrhythmic events, heart failure events, and major adverse cardiac events (MACE). Results A total of 103 studies including 29 687 patients with NIDCM were analyzed. Late gadolinium enhancement (LGE) presence and extent (per 1%) were associated with higher all-cause mortality (hazard ratio [HR], 1.81 [95% CI, 1.60-2.04]; P < .001 and HR, 1.07 [95% CI, 1.02-1.12]; P = .02, respectively), cardiovascular mortality (HR, 2.43 [95% CI, 2.13-2.78]; P < .001 and HR, 1.15 [95% CI, 1.07-1.24]; P = .01), arrhythmic events (HR, 2.69 [95% CI, 2.20-3.30]; P < .001 and HR, 1.07 [95% CI, 1.03-1.12]; P = .004) and heart failure events (HR, 1.98 [95% CI, 1.73-2.27]; P < .001 and HR, 1.06 [95% CI, 1.01-1.10]; P = .02). Left ventricular ejection fraction (LVEF) (per 1%) was not associated with all-cause mortality (HR, 0.99 [95% CI, 0.97-1.02]; P = .47), cardiovascular mortality (HR, 0.97 [95% CI, 0.94-1.00]; P = .05), or arrhythmic outcomes (HR, 0.99 [95% CI, 0.97-1.01]; P = .34). Lower risks for heart failure events (HR, 0.97 [95% CI, 0.95-0.98]; P = .002) and MACE (HR, 0.98 [95% CI, 0.96-0.99]; P < .001) were observed with higher LVEF. Higher native T1 relaxation times (per 10 ms) were associated with arrhythmic events (HR, 1.07 [95% CI, 1.01-1.14]; P = .04) and MACE (HR, 1.06 [95% CI, 1.01-1.11]; P = .03). Global longitudinal strain (GLS) (per 1%) was not associated with heart failure events (HR, 1.06 [95% CI, 0.95-1.18]; P = .15) or MACE (HR, 1.03 [95% CI, 0.94-1.14]; P = .43). Limited data precluded definitive analysis for native T1 relaxation times, GLS, and extracellular volume fraction (ECV) with respect to mortality outcomes. Conclusion The presence and extent of LGE were associated with various adverse clinical outcomes, whereas LVEF was not significantly associated with mortality and arrhythmic end points in NIDCM. Risk stratification using native T1 relaxation times, extracellular volume fraction, and global longitudinal strain requires further evaluation.
Collapse
Affiliation(s)
- Christian Eichhorn
- Division of Acute Medicine, University Hospital Basel, Basel, Switzerland
- Private University in the Principality of Liechtenstein, Triesen
- Department of Internal Medicine, See-Spital, Horgen, Switzerland
| | - David Koeckerling
- Department of Cardiology, Angiology and Respiratory Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Rohin K. Reddy
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Maddalena Ardissino
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Marek Rogowski
- Private University in the Principality of Liechtenstein, Triesen
- Agaplesion General Hospital, Hagen, Germany
| | - Bernadette Coles
- Velindre University NHS Trust Library & Knowledge Service, Cardiff University, Cardiff, Wales
| | - Lukas Hunziker
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Simon Greulich
- Department of Cardiology and Angiology, University of Tübingen, Tübingen, Germany
| | - Isaac Shiri
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Norbert Frey
- Department of Cardiology, Angiology and Respiratory Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jens Eckstein
- Division of Acute Medicine, University Hospital Basel, Basel, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raymond Y. Kwong
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - George C. M. Siontis
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Chen HS, Jungen C, Kimura Y, Dibbets-Schneider P, Piers SR, Androulakis AFA, van der Geest RJ, de Geus-Oei LF, Scholte AJHA, Lamb HJ, Jongbloed MRM, Zeppenfeld K. Ventricular Arrhythmia Substrate Distribution and Its Relation to Sympathetic Innervation in Nonischemic Cardiomyopathy Patients. JACC Clin Electrophysiol 2022; 8:1234-1245. [PMID: 36265999 DOI: 10.1016/j.jacep.2022.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Nonischemic cardiomyopathy patients referred for catheter ablation of ventricular arrhythmias (VAs) typically have either inferolateral (ILS) or anteroseptal (ASS) VA substrate locations, with poorer outcomes for ASS. Sympathetic denervation is an important determinant of arrhythmogenicity. Its relation to nonischemic fibrosis in general and to the different VA substrates is unknown. OBJECTIVES This study sought to evaluate the association between VA substrates, myocardial fibrosis, and sympathetic denervation. METHODS Thirty-five patients from the Leiden Nonischemic Cardiomyopathy Study, who underwent electroanatomic voltage mapping and iodine-123 metaiodobenzylguanidine imaging between 2011 and 2018 were included. Late gadolinium-enhanced cardiac magnetic resonance data were collected when available. The relation between global cardiac sympathetic innervation and area-weighted unipolar voltage (UV) as a surrogate for diffuse fibrosis was evaluated. For regional analysis, patients were categorized as ASS or ILS. The distribution of low UV, sympathetic denervation, and late gadolinium enhancement (LGE) scar were compared using the 17-segment model. RESULTS Median area-weighted UV was 12.3 mV in patients with normal sympathetic innervation and 8.7 mV in patients with sympathetic denervation. Global sympathetic denervation correlated with diffuse myocardial fibrosis (R = 0.53; P = 0.02). ILS (n = 13) matched with low UV, sympathetic denervation, and LGE scar in all patients, whereas ASS (n = 11) matched with low UV in all patients, with LGE scar in 63% (P = 0.20), but with sympathetic denervation in only 27% of patients (P = 0.0002). CONCLUSIONS Global cardiac sympathetic denervation is related to fibrosis in nonischemic cardiomyopathy patients with VA. The mismatch between regional fibrosis and preserved innervation for ASS may contribute to a VA substrate difficult to control by catheter ablation.
Collapse
Affiliation(s)
- H Sophia Chen
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands; Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Christiane Jungen
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands; Department of Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Germany
| | - Yoshitaka Kimura
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Sebastiaan R Piers
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands
| | - Alexander F A Androulakis
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob J van der Geest
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arthur J H A Scholte
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Monique R M Jongbloed
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands; Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Katja Zeppenfeld
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|