1
|
Khokhar MK, Kumar R, Kumar A, Sehgal M, Singh SP, Meena PN, Singh N, Acharya LK, Birah A, Singh K, Bana RS, Gurjar MS, Chander S, Choudhary M. Impact of IPM practices on microbial population and disease development in transplanted and direct-seeded rice. Front Microbiol 2024; 15:1388754. [PMID: 39144223 PMCID: PMC11323746 DOI: 10.3389/fmicb.2024.1388754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/07/2024] [Indexed: 08/16/2024] Open
Abstract
Integrated pest management (IPM) is a comprehensive approach to managing diseases, focusing on combining various strategies to reduce pathogen populations effectively and in an environmentally conscious way. We investigated the effects of IPM on beneficial microbial populations and its relationship with pathogen populations in both direct-seeded rice (DSR) and transplanted rice (TR) systems. This study demonstrates that IPM practices have significantly higher populations of beneficial microbes, such as Trichoderma harzianum and Pseudomonas fluorescens, and lower level of the pathogen Fusarium verticillioides compared to non-IPM (farmer practices). The average mean population of T. harzianum was 6.38 × 103 CFU/g in IPM compared to 3.22 × 103 CFU/g in non-IPM during 2019 in TR at Bambawad. P. fluorescens mean population in 2019 was significantly higher in IPM (4.67 × 103 CFU/g) than in non-IPM (3.82 × 103 CFU/g) at the Karnal location in DSR. The F. verticillioides populations were significantly lower in IPM fields (9.46 × 103 CFU/g) compared to non-IPM fields (11.48 × 103 CFU/g) during 2017 at Haridwar in TR. Over three years, a significant increase in the populations of beneficial microbes in IPM plots was observed in all three locations of both TR and DSR, highlighting the sustainable impact of IPM practices. Disease dynamics analysis revealed that IPM effectively managed key diseases in both DSR and TR systems, with significant correlations between microbial density and disease severity. A significant positive correlation was recorded between F. verticillioides population and bakanae incidence at all three locations. Sheath blight incidence was negatively correlated with P. fluorescens population in both TR and DSR. In DSR, bacterial blight and brown spot diseases are reduced with the increased population of T. harzianum. Bioagents T. harzianum and P. fluorescens reduced disease incidence, underscoring the role of beneficial microbes in disease suppression and their importance for sustainable production using IPM practices.
Collapse
Affiliation(s)
- M. K. Khokhar
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
| | - Rakesh Kumar
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
| | - Anoop Kumar
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
| | - Mukesh Sehgal
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
| | - S. P. Singh
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
| | - P. N. Meena
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
| | - Niranjan Singh
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
| | - L. K. Acharya
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
| | - Ajanta Birah
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
| | | | - R. S. Bana
- ICAR-Indian Agriculture Research Institute, New Delhi, India
| | - M. S. Gurjar
- ICAR-Indian Agriculture Research Institute, New Delhi, India
| | - Subhash Chander
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
| | - Manoj Choudhary
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Zhou R, Zhang Y, Hao D, Zhang Y, Luo J, Li T. Effects of different remediation methods on phosphorus transformation and availability. CHEMOSPHERE 2023; 340:139902. [PMID: 37607600 DOI: 10.1016/j.chemosphere.2023.139902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/04/2023] [Accepted: 08/19/2023] [Indexed: 08/24/2023]
Abstract
The effects of different heavy metal pollution remediation methods on soil nutrient transformation and soil health remain unclear. In this study, the effects of phytoextraction (PE) and passivation remediation (PR) on Cd-polluted soil phosphorus transformation and availability were compared by pot experiment. The results showed that PE significantly reduced the concentrations of total and available Cd (both H2O-Cd and DTPA-Cd) in soil, PR also decreased available Cd content but had no significant effect on total Cd content. PE slightly increased soil pH and NH4+-N content, while PR significantly increased soil pH, NO3--N and AK content. PE promoted the conversion of stable P (including HCl-Pi and residual-Pt), and increased the content of labile P (including H2O-Pi, NaHCO3-Pi and NaHCO3-Po) and the proportion of moderately labile P (including NaOH-Pi and NaOH-Po), while PR showed the opposite trend. PE showed a higher soil phoC gene abundance and acid phosphatase (ACP) activity, while PR showed a higher phoD gene copies and alkaline phosphatase (ALP) activity. Soil bacteria and phoD-harboring bacteria community was significantly affected by remediation methods and soil types. Compared with PR, PE reduced phoD-harboring bacterial diversity but significantly increased the abundance of genera associated with P dissolution (Streptomyces) and P conversion (Bradyrhizobium and Frankia), both of which were significantly positively correlated with labile P or moderately labile P. In general, compared with PR, PE can effectively remove soil Cd pollution, while maintaining a higher content of labile P and a higher proportion of moderately labile P, which can be considered as a green and sustainable remediation strategy conducive to soil quality.
Collapse
Affiliation(s)
- Runhui Zhou
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Zhang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dian Hao
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxuan Zhang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Anthonio CK, Jing H, Jin C, Khan MN, Jiangxue D, Garba HN, Dongchu L, Guangrong L, Shujun L, Lisheng L, Huimin Z. Impact of long-term fertilization on phosphorus fractions and manganese oxide with their interactions in paddy soil aggregates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 333:117440. [PMID: 36758407 DOI: 10.1016/j.jenvman.2023.117440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
One under-studied microelement, manganese (Mn), due to its potential to considerably interact, and limit labile, and moderately-labile soil phosphorus (P) pools, was studied in Nanchang (NC), and Qiyang (QY) under paddy conditions. The Hedley's P sequential fractionation procedure was utilized to extract, and quantify various P fractions at both surface (0-20 cm) and subsurface (20-40 cm) layers. Unfertilized control (CK), nitrogen, phosphorus, and potassium (NPK), and NPK amended with animal manure (NPKM) were used as treatments. From both sites, the manure amended fertilizer (NPKM) compared to chemical NPK formed higher proportions of macro-aggregates (>2 and 2-0.25 mm) in both layers. Total P (TP) values of 842.1 (>2 mm), and 744.4 mg kg-1 (2-0.25 mm) from NC, and QY, respectively were accumulated by NPKM compared to NPK, and CK. Total P values of 806.4, and 350.4 mg kg-1 in the >2 mm aggregate size, respectively for NC, and QY were observed in the subsurface layer. Inorganic moderately labile P (NaOH-Pi) was the dominant fraction under all fertilizer treatments. Concentrations of 232.3 (<0.053 mm), and 202.1 mg kg-1 (0.25-0.053 mm) of NaOH-Pi were accumulated by NPKM, respectively for NC, and QY in the surface layer. In the subsurface layer, concentrations of NaOH-Pi (217.5 mg kg-1; <0.053 mm) from NC, and residual-P (57.3 mg kg-1; >2 mm) from QY were accumulated by NPKM. Similarly, NPKM in contrast to NPK contributed higher Mehlich-3 manganese (M3-Mn) oxide in all aggregate sizes from both sites. Generally, macro-aggregates contributed higher TP, fractions of P, and M3-Mn oxide than micro-aggregates. There was a positive relationship between P pools and M3-Mn oxide at both sites. Additions of animal manure were associated with increased P fractions, and Mn oxides in the paddy soil aggregates, which raises environmental concern.
Collapse
Affiliation(s)
- Christian Kofi Anthonio
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China; Council for Scientific and Industrial Research-Oil Palm Research Institute-Coconut Programme, P. O. Box 245, Sekondi, Ghana
| | - Huang Jing
- National Observation Station of Qiyang Agri-ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, Hunan, 426182, China
| | - Chen Jin
- Soil and Fertilizer & Resources and Environmental Institute Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Muhammad Numan Khan
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Du Jiangxue
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hayatu Nafiu Garba
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China; Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, Usmanu Danfodiyo University, Sokoto, 2346, Nigeria
| | - Li Dongchu
- National Observation Station of Qiyang Agri-ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, Hunan, 426182, China
| | - Liu Guangrong
- Soil and Fertilizer & Resources and Environmental Institute Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Liu Shujun
- National Observation Station of Qiyang Agri-ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, Hunan, 426182, China
| | - Liu Lisheng
- National Observation Station of Qiyang Agri-ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, Hunan, 426182, China
| | - Zhang Huimin
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China; National Observation Station of Qiyang Agri-ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, Hunan, 426182, China.
| |
Collapse
|
4
|
Time-dependent impact of co-matured manure with elemental sulfur and biochar on the soil agro-ecological properties and plant biomass. Sci Rep 2023; 13:4327. [PMID: 36922558 PMCID: PMC10017759 DOI: 10.1038/s41598-023-31348-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Farmyard manure is the most common type of organic fertilizer, and its properties depend mainly on the type of livestock, bedding material and the conditions of fermentation. Co-maturing of manure with other amendments to modify its final properties has been seen as a win-win strategy recently. This study aimed to evaluate the differences in the effect of unenriched manure and manures co-matured with biochar, elemental sulfur or both amendments on the soil physico-chemical and biological properties, and plant (barley, maize) biomass production. For this purpose a pot experiment was carried out in a time-dependent way. Samples were taken from 12 week-lasting (test crop barley) and 24 week-lasting (test crop maize) pot cultivation carried out in a growth chamber. Co-matured manure with biochar showed the highest rate of maturation expressed as humic to fulvic acid ratio, its amendment to soil significantly increased the dry aboveground biomass weight in the half-time (12 weeks) of experiment. However, the effect vanished after 24 weeks. We received for this variant highest long-term (24 weeks) contents of total carbon and nitrogen in soil. Contrarily, co-matured manure with biochar and elemental sulfur led to short-term carbon sequestration (the highest total carbon in 12 weeks) due to presumed retardation of microbial-mediated transformation of nutrients. We conclude that the prolonged pot experiment with biochar or elemental sulfur enriched manure led to the increased recalcitrancy of soil organic matter and retardation of soil nutrient transformation to the plant-available form.
Collapse
|
5
|
Holatko J, Hammerschmiedt T, Kintl A, Mustafa A, Naveed M, Baltazar T, Latal O, Skarpa P, Ryant P, Brtnicky M. Co-composting of cattle manure with biochar and elemental sulphur and its effects on manure quality, plant biomass and microbiological characteristics of post-harvest soil. FRONTIERS IN PLANT SCIENCE 2022; 13:1004879. [PMID: 36247542 PMCID: PMC9557162 DOI: 10.3389/fpls.2022.1004879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Improvement of manure by co-composting with other materials is beneficial to the quality of the amended soil. Therefore, the manure was supplied with either biochar, elemental sulphur or both prior to fermentation in 50 L barrels for a period of eight weeks. The manure products were subsequently analyzed and used as fertilizers in a short-term pot experiment with barley fodder (Hordeum vulgare L.). The experiment was carried out under controlled conditions in a growth chamber for 12 weeks. The sulphur-enriched manure showed the lowest manure pH and highest ammonium content. The co-fermentation of biochar and sulphur led to the highest sulphur content and an abundance of ammonium-oxidizing bacteria in manure. The biochar+sulphur-enriched manure led to the highest dry aboveground plant biomass in the amended soil, whose value was 98% higher compared to the unamended control, 38% higher compared to the variant with biochar-enriched manure and 23% higher compared to the manure-amended variant. Amendment of the sulphur-enriched manure types led to the highest enzyme activities and soil respirations (basal, substrate-induced). This innovative approach to improve the quality of organic fertilizers utilizes treated agricultural waste (biochar) and a biotechnological residual product (elementary sulphur from biogas desulphurization) and hence contributes to the circular economy.
Collapse
Affiliation(s)
- Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Agrovyzkum Rapotin, Ltd., Rapotin, Czechia
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Agricultural Research, Ltd., Troubsko, Czechia
| | - Adnan Mustafa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Praha, Czechia
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Tivadar Baltazar
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Oldrich Latal
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Agrovyzkum Rapotin, Ltd., Rapotin, Czechia
| | - Petr Skarpa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Pavel Ryant
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| |
Collapse
|
6
|
Cross-Talk between Transcriptome Analysis and Physiological Characterization Identifies the Genes in Response to the Low Phosphorus Stress in Malus mandshurica. Int J Mol Sci 2022; 23:ijms23094896. [PMID: 35563283 PMCID: PMC9105917 DOI: 10.3390/ijms23094896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Phosphorus (Pi) is a macronutrient essential for plant growth, development, and reproduction. However, there is not an efficient available amount of Pi that can be absorbed by plants in the soil. Previously, an elite line, MSDZ 109, selected from Malus mandshurica, was justified for its excellent tolerance to low phosphorus (low−Pi) stress. To date, however, the genes involved in low−Pi stress tolerance have not yet been unraveled in this species. Currently, the physiological responses of this line for different days to low−Pi stress were characterized, and their roots as well as leaves were used to carry out transcriptome analysis, so as to illuminate the potential molecular pathways and identify the genes involved in low−Pi stress−response. After exposure to low−Pi treatment (32 µmol/L KH2PO4) for 20 day after treatment (DAF) the biomass of shoots was significantly reduced in comparison with that of the stress−free (control), and root architecture diversely changed. For example, the root growth parameters e.g., length, surface area, and total volume somewhat increase in comparison with those of the control. The activity of acid phosphatase (ACP) increased with the low−Pi treatment, whereas the photosynthetic rate and biomass were declining. The activity of antioxidant enzymes, e.g., superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), were substantially elevated in response to low−Pi treatment. Many enzyme−related candidate genes e.g., MmCAT1, MmSOD1 and MmPOD21 were up−regulated to low−Pi treatment. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the processes of photosynthesis, plant hormone signal transduction, and MAPK signaling pathway were affected in the low−Pi response. In combination with the physiological characterization, several low−Pi−responsive genes, e.g., PHT, PHO, were identified, and the genes implicated in Pi uptake and transport, such as MmPHT1;5, MmPHO1, MmPAP1, etc., were also obtained since their expression status varied among the exposure times, which probably notifies the candidates involved in low−Pi−responsive tolerance in this line. Interestingly, low−Pi treatment activated the expression of transcription factors including the WRKY family, MYB family, etc. The available evidences will facilitate a better understanding of the roles of this line underlying the high tolerance to low−Pi stress. Additionally, the accessible data are helpful for the use of the apple rootstock M. mandshurica under low−Pi stress.
Collapse
|
7
|
Changes in Soil-Phosphorus Fractions by Nitrogen and Phosphorus Fertilization in Korean Pine Plantation and Its Natural Forest. FORESTS 2022. [DOI: 10.3390/f13040527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Phosphorus (P) is the restraining aspect in the forest ecosystem, particularly in temperate regions, and makes the ecosystem more liable to nitrogen (N)-derived acidification. However, it remains poorly understood how N and P fertilization together affects soil-P availability and other soil properties. To address this question, a factorial experiment was conducted with N and P additions under two forest ecosystems, i.e., Korean pine plantation (KPP) and natural Korean pine forest (NKPF). Both forests were divided in to three subplots and each subplot underwent four different treatments, i.e., C: control (no N and P addition), L: Low treatment (5 g N m−2 a−1 + 5 g P m−2 a−1), M: Medium treatment (15 g N m−2 a−1 + 10 g P m−2 a−1), and H: High treatment (30 g N m−2 a−1 + 20 g P m−2 a−1). Results revealed that the soil-P fractions changed during N and P fertilization over time although organic-P (Po) fractions were lower than inorganic-P (Pi) fractions. The residual P was increased overall, along with N deposition in soil. Soil organic carbon (SOC) was more present in NKPF soils as compared to KPP. Principal component analysis (PCA) indicated that at medium treatment there is maximum availability of P fractions as compared to other treatments in both forests, while high treatment showed some fixation of P in soils across both forests. Furthermore, SOC showed a negative correlation with residual P, while pH showed a positive correlation. Total N in soil showed a negative correlation with soil pH and residual P. Therefore, it is recommended that application of N and P at the rate of 15 g N m−2 a−1 + 10 g P m−2 a−1 is suitable in these two forest types to enhance P availability.
Collapse
|
8
|
Jain D, Kour R, Bhojiya AA, Meena RH, Singh A, Mohanty SR, Rajpurohit D, Ameta KD. Zinc tolerant plant growth promoting bacteria alleviates phytotoxic effects of zinc on maize through zinc immobilization. Sci Rep 2020; 10:13865. [PMID: 32807871 PMCID: PMC7431563 DOI: 10.1038/s41598-020-70846-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/07/2020] [Indexed: 11/10/2022] Open
Abstract
The increasing heavy metal contamination in agricultural soils has become a serious concern across the globe. The present study envisages developing microbial inoculant approach for agriculture in Zn contaminated soils. Potential zinc tolerant bacteria (ZTB) were isolated from zinc (Zn) contaminated soils of southern Rajasthan, India. Isolates were further screened based on their efficiency towards Zn tolerance and plant growth promoting activities. Four strains viz. ZTB15, ZTB24, ZTB28 and ZTB29 exhibited high degree of tolerance to Zn up to 62.5 mM. The Zn accumulation by these bacterial strains was also evidenced by AAS and SEM-EDS studies. Assessment of various plant growth promotion traits viz., IAA, GA3, NH3, HCN, siderophores, ACC deaminase, phytase production and P, K, Si solubilization studies revealed that these ZTB strains may serve as an efficient plant growth promoter under in vitro conditions. Gluconic acid secreted by ZTB strains owing to mineral solubilization was therefore confirmed using high performance liquid chromatography. A pot experiment under Zn stress conditions was performed using maize (Zea mays) variety (FEM-2) as a test crop. Zn toxicity reduced various plant growth parameters; however, inoculation of ZTB strains alleviated the Zn toxicity and enhanced the plant growth parameters. The effects of Zn stress on antioxidant enzyme activities in maize under in vitro conditions were also investigated. An increase in superoxide dismutase, peroxidase, phenylalanine ammonia lyase, catalase and polyphenol oxidase activity was observed on inoculation of ZTB strains. Further, ZIP gene expression studies revealed high expression in the ZIP metal transporter genes which were declined in the ZTB treated maize plantlets. The findings from the present study revealed that ZTB could play an important role in bioremediation in Zn contaminated soils.
Collapse
Affiliation(s)
- Devendra Jain
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India.
| | - Ramandeep Kour
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India
| | - Ali Asger Bhojiya
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India.,Department of Agriculture and Veterinary Sciences, Mewar University, Chittaurgarh, Rajasthan, India
| | - Ram Hari Meena
- Department of Soil Science and Agricultural Chemistry, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India
| | - Abhijeet Singh
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India.
| | - Santosh Ranjan Mohanty
- AINP on Soil Biodiversity-Bio-Fertilizers, Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, Madhya Pradesh, 462038, India
| | - Deepak Rajpurohit
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India
| | - Kapil Dev Ameta
- Department of Horticulture, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India
| |
Collapse
|
9
|
Kong Y, Kuzyakov Y, Ruan Y, Zhang J, Wang T, Wang M, Guo S, Shen Q, Ling N. DNA Stable-Isotope Probing Delineates Carbon Flows from Rice Residues into Soil Microbial Communities Depending on Fertilization. Appl Environ Microbiol 2020; 86:e02151-19. [PMID: 31953339 PMCID: PMC7082572 DOI: 10.1128/aem.02151-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/12/2020] [Indexed: 11/20/2022] Open
Abstract
Decomposition of crop residues in soil is mediated by microorganisms whose activities vary with fertilization. The complexity of active microorganisms and their interactions utilizing residues is impossible to disentangle without isotope applications. Thus, 13C-labeled rice residues were employed, and DNA stable-isotope probing (DNA-SIP) combined with high-throughput sequencing was applied to identify microbes active in assimilating residue carbon (C). Manure addition strongly modified microbial community compositions involved in the C flow from rice residues. Relative abundances of the bacterial genus Lysobacter and fungal genus Syncephalis were increased, but abundances of the bacterial genus Streptomyces and fungal genus Trichoderma were decreased in soils receiving mineral fertilizers plus manure (NPKM) compared to levels in soils receiving only mineral fertilizers (NPK). Microbes involved in the flow of residue C formed a more complex network in NPKM than in NPK soils because of the necessity to decompose more diverse organic compounds. The fungal species (Jugulospora rotula and Emericellopsis terricola in NPK and NPKM soils, respectively) were identified as keystone species in the network and may significantly contribute to residue C decomposition. Most of the fungal genera in NPKM soils, especially Chaetomium, Staphylotrichum, Penicillium, and Aspergillus, responded faster to residue addition than those in NPK soils. This is connected with the changes in the composition of the rice residue during degradation and with fungal adaptation (abundance and activity) to continuous manure input. Our findings provide fundamental information about the roles of key microbial groups in residue decomposition and offer important cues on manipulating the soil microbiome for residue utilization and C sequestration in soil.IMPORTANCE Identifying and understanding the active microbial communities and interactions involved in plant residue utilization are key questions to elucidate the transformation of soil organic matter (SOM) in agricultural ecosystems. Microbial community composition responds strongly to management, but little is known about specific microbial groups involved in plant residue utilization and, consequently, microbial functions under different methods of fertilization. We combined DNA stable-isotope (13C) probing and high-throughput sequencing to identify active fungal and bacterial groups degrading residues in soils after 3 years of mineral fertilization with and without manure. Manuring changed the active microbial composition and complexified microbial interactions involved in residue C flow. Most fungal genera, especially Chaetomium, Staphylotrichum, Penicillium, and Aspergillus, responded to residue addition faster in soils that historically had received manure. We generated a valuable library of microorganisms involved in plant residue utilization for future targeted research to exploit specific functions of microbial groups in organic matter utilization and C sequestration.
Collapse
Affiliation(s)
- Yali Kong
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Göttingen, Germany
- Agro-Technology Institute, RUDN University, Moscow, Russia
| | - Yang Ruan
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Junwei Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Tingting Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Min Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ning Ling
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|