Ni J, Dong Z, Qiao F, Zhou W, Cao A, Xing L. Phylogenetic Analysis of Wall-Associated Kinase Genes in
Triticum Species and Characterization of
TaWAK7 Involved in Wheat Powdery Mildew Resistance.
PLANT DISEASE 2024;
108:1223-1235. [PMID:
37923976 DOI:
10.1094/pdis-06-23-1090-re]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Wall-associated kinases (WAKs), a group of receptor-like kinases, have been found to play important roles in defending against pathogens and in various developmental processes. However, the importance of this family in wheat remains largely unknown. Wheat powdery mildew is caused by Blumeria graminis f. sp. tritici (Bgt), which initiates infection on the cell surface and forms haustoria inside the cell; therefore, the defense to Bgt involves extracellular and subsequently intracellular signals. In this study, WAKs were identified genome-wide and analyzed phylogenetically, and then a transmembrane WAK gene that putatively participated in pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity to Bgt was functionally and evolutionarily investigated. In total, 1,193 WAKs were identified from wheat and its Gramineae relatives. Phylogenetic analysis indicated that WAKs expanded through tandem duplication or segment duplication. TaWAK7, from chromosome 2A, was identified as a Bgt-inducible gene both in susceptible and resistant materials, but it showed distinct responsive patterns. Functional analysis showed that TaWAK7 was involved in both the basal and resistance gene-mediated resistances. The specific gene structures and protein characteristics of TaWAK7, along with its orthologs, were characterized both in subgenomes of Triticum spp. and in the A genome of multiple wheat accessions, which revealed that TaWAK7 orthologs underwent complex evolution with frequent gene fusion and domain deletion. In addition, three cytoplasmic proteins interacting with TaWAK7 were indicated by yeast two-hybrid and bimolecular fluorescence complementation assays. Binding of TaWAK7 with these proteins could change its subcellular localization from the plasma membrane to the cytoplasm. This study provides a better understanding of the evolution of WAKs at the genomic level and TaWAK7 at the gene level and provides useful clues for further investigation of how WAKs transmit the extracellular signals to the cytoplasm to activate defense responses.
Collapse