1
|
Kim TH, Song Z, Jung J, Sung JS, Kang MJ, Shim WB, Lee M, Pyun JC. Functionalized Parylene Films for Enhancement of Antibody Production by Hybridoma Cells. ACS APPLIED BIO MATERIALS 2023; 6:3726-3738. [PMID: 37647153 DOI: 10.1021/acsabm.3c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In this study, the influence of microenvironments on antibody production of hybridoma cells was analyzed using six types of functionalized parylene films, parylene-N and parylene-C (before and after UV radiation), parylene-AM, and parylene-H, and using polystyrene as a negative control. Hybridoma cells were cultured on modified parylene films that produced a monoclonal antibody against the well-known fungal toxin ochratoxin-A. Surface properties were analyzed for each parylene film, such as roughness, chemical functional groups, and hydrophilicity. The proliferation rate of the hybridoma cells was observed for each parylene film by counting the number of adherent cells, and the total amount of produced antibodies from different parylene films was estimated using indirect ELISA. In comparison with the polystyrene, the antibody-production by parylene-H and parylene-AM was estimated to be observed to be as high as 210-244% after the culture of 24 h. These results indicate that the chemical functional groups of the culture plate could influence antibody production. To analyze the influence of the microenvironments of the modified parylene films, we performed cell cycle analysis to estimate the ratio of the G0/G1, S, and G2/M phases of the hybridoma cells on each parylene film. From the normalized proportion of phases of the cell cycle, the difference in antibody production from different surfaces was considered to result from the difference in the proliferation rate of hybridoma cells, which occurred from the different physical and chemical properties of the parylene films. Finally, protein expression was analyzed using an mRNA array to determine the effect of parylene films on protein expression in hybridoma cells. The expression of three antibody production-related genes (CD40, Sox4, and RelB) was analyzed in hybridoma cells cultured on modified parylene films.
Collapse
Affiliation(s)
- Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Zhiquan Song
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Jeong-Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Min-Jung Kang
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | - Won-Bo Shim
- Department of Food Science and Technology & Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering and △Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
2
|
Madarász M, Fedor FZ, Fekete Z, Rózsa B. Immunohistological responses in mice implanted with Parylene HT - ITO ECoG devices. Front Neurosci 2023; 17:1209913. [PMID: 37746144 PMCID: PMC10513038 DOI: 10.3389/fnins.2023.1209913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Transparent epidural devices that facilitate the concurrent use of electrophysiology and neuroimaging are arising tools for neuroscience. Testing the biocompatibility and evoked immune response of novel implantable devices is essential to lay down the fundamentals of their extensive application. Here we present an immunohistochemical evaluation of a Parylene HT/indium-tin oxide (ITO) based electrocorticography (ECoG) device, and provide long-term biocompatibility data at three chronic implantation lengths. We implanted Parylene HT/ITO ECoG devices epidurally in 5 mice and evaluated the evoked astroglial response, neuronal density and cortical thickness. We found increased astroglial response in the superficial cortical layers of all mice compared to contralateral unimplanted controls. This difference was largest at the first time point and decreased over time. Neuronal density was lower on the implanted side only at the last time point, while cortical thickness was smaller in the first and second time points, but not at the last. In this study, we present data that confirms the feasibility and chronic use of Parylene HT/ITO ECoG devices.
Collapse
Affiliation(s)
- Miklós Madarász
- BrainVision Center, Budapest, Hungary
- János Szentágothai PhD Program of Semmelweis University, Budapest, Hungary
| | - Flóra Z. Fedor
- BrainVision Center, Budapest, Hungary
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
| | - Zoltán Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Sleep Oscillation Research Group, Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Budapest, Hungary
| | - Balázs Rózsa
- BrainVision Center, Budapest, Hungary
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
- Two-Photon Measurement Technology Research Group, The Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
- Femtonics Ltd., Budapest, Hungary
| |
Collapse
|
3
|
The Effect of Reactive Sputtering on the Microstructure of Parylene-C. MATERIALS 2022; 15:ma15155203. [PMID: 35955139 PMCID: PMC9369700 DOI: 10.3390/ma15155203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 12/10/2022]
Abstract
Sputtering technique involves the use of plasma that locally heats surfaces of substrates during the deposition of atoms or molecules. This modifies the microstructure by increasing crystallinity and the adhesive properties of the substrate. In this study, the effect of sputtering on the microstructure of parylene-C was investigated in an aluminum nitride (AlN)-rich plasma environment. The sputtering process was carried out for 30, 45, 90 and 120 min on a 5 μm thick parylene-C film. Topography and morphology analyses were conducted on the parylene-C/AlN bilayers. Based on the experimental data, the results showed that the crystallinity of parylene-C/AlN bilayers was increased after 30 min of sputtering and remained saturated for 120 min. A scratch-resistance test conducted on the bilayers depicted that a higher force is required to delaminate the bilayers on top of the substrate. Thus, the adhesion properties of parylene-C/AlN bilayers were improved on glass substrate by about 17% during the variation of sputtering time.
Collapse
|
4
|
Li S, Graham ES, Unsworth CP. The Effect of Basic Microshapes on hNT Astrocytes Cytoplasmic Process Outgrowth. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2253-2256. [PMID: 33018456 DOI: 10.1109/embc44109.2020.9175331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Astrocytes are a non-homogeneous cell type, highly mobile which constantly extend and retract their cytoplasmic processes in what would seem random in direction. In this paper, we investigate how simple geometric microshapes can be used to control the outgrowth of human astrocytes cytoplasmic processes. We investigate the effect of how five regular microshapes: the circle, triangle, square, pentagon and hexagon control astrocyte cytoplasmic process outgrowth. For all the different microshape types, we observe that it is the corners of the shapes that that cause the astrocyte to produce spontaneous outgrowth except for the circle where the outgrowth occurs at a random radial position. This work suggests that the geometry of cell adhesive regions effects the outgrowth of hNT astrocytes.
Collapse
|