1
|
Di Bacco VE, Gage WH. Validation of Linear and Nonlinear Gait Variability Measures Derived From a Smartphone System Compared to a Gold-Standard Footswitch System During Overground Walking. J Appl Biomech 2024; 40:437-443. [PMID: 39222917 DOI: 10.1123/jab.2022-0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/29/2024] [Accepted: 07/03/2024] [Indexed: 09/04/2024]
Abstract
Smartphones, with embedded accelerometers, may be a viable method to monitor gait variability in the free-living environment. However, measurements estimated using smartphones must first be compared to known quantities to ensure validity. This study assessed the validity and reliability of smartphone-derived gait measures compared to a gold-standard footswitch system during overground walking. Seventeen adults completed three 8-minute overground walking trials during 3 separate visits. The stride time series was calculated as the time difference between consecutive right heel contact events within the footswitch and smartphone-accelerometry signals. Linear (average stride time, stride time standard deviation, and stride time coefficient of variation) and nonlinear (fractal scaling index, approximate entropy, and sample entropy) measures were calculated for each stride time series. Bland-Altman plots with 95% limits of agreement assessed agreement between systems. Intraclass correlation coefficients assessed reliability across visits. Bland-Altman plots revealed acceptable limits of agreement for all measures. Intraclass correlation coefficients revealed good-to-excellent reliability for both systems, except for fractal scaling index, which was moderate. The smartphone system is a valid method and performs similarly to gold-standard research equipment. These findings suggest the development and implementation of an inexpensive, easy-to-use, and ubiquitous telehealth instrument that may replace traditional laboratory equipment for use in the free-living environment.
Collapse
Affiliation(s)
- Vincenzo E Di Bacco
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - William H Gage
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
2
|
Faria A, Sousa T, Vaz JR, Gabriel R, Gama J, Stergiou N. Females Present Reduced Minimum Toe Clearance During Walking As Compared to Males in Active Older Adults. J Gerontol A Biol Sci Med Sci 2024; 79:glae109. [PMID: 38666361 PMCID: PMC11161860 DOI: 10.1093/gerona/glae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Physical decline due to aging has been associated with the risk of falls. Minimum toe clearance (MTC) is a gait parameter that might play a role in the mechanism of tripping and falling. However, it is unclear if there are any sex-related effects regarding MTC as people age. The present study investigated if there are sex-related differences in MTC in older active adults. METHODS Twenty-three females and 23 males (F: 65.5 ± 4.8 years; M: 61.9 ± 5.2 years) walked on a treadmill at a preferred walking speed, while kinematic data were obtained at a sampling frequency of 100 Hz and up-sampled to 120 and 240 Hz. MTC was calculated from the kinematics data and evaluated concerning its magnitude (ie, MTC and MTC/leg length), the time between left/right MTC (ie, T-MTC), amount of variability (ie, coefficient of variation [CV] and coefficient of variation modified [CVm]), and temporal structure of variability, that is, the complexity of the time series (ie, MTC α, T-MTC α). RESULTS No sex effects were found for MTC/leg length, for the amount of variability (ie, CV and CVm), and for the complexity of the time series (MTC α, T-MTC α). However, females exhibited significantly lower MTC and T-MTC after adjusting for walking speed, mass, and age as covariates. CONCLUSIONS The reduced MTC in females suggests a potential sex-related disparity in the risk of tripping and falling among active older adults.
Collapse
Affiliation(s)
- Aurélio Faria
- Department of Sport Science, Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Beira Interior, Covilhã, Portugal
| | - Tiago Sousa
- Department of Sport Science, Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Beira Interior, Covilhã, Portugal
| | - João R Vaz
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz – Cooperativa de Ensino Superior, Monte da Caparica, Portugal
- Division of Biomechanics and Research Development, Department of Biomechanics, Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Ronaldo Gabriel
- Department of Sport Sciences, Exercise, and Health, Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Jorge Gama
- Centre of Mathematics and Applications, University of Beira Interior, Covilhã, Portugal
| | - Nikolaos Stergiou
- Division of Biomechanics and Research Development, Department of Biomechanics, Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, Nebraska, USA
- Department of Physical Education and Sport Science, Biomechanics Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
3
|
Godin A, Rouget L, Eustache E, Mourot L, Sagawa Y. Evaluation of the optimal number of steps to obtain reliable running spatio-temporal parameters and their variability. Gait Posture 2024; 111:37-43. [PMID: 38615567 DOI: 10.1016/j.gaitpost.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Spatio-temporal running parameters and their variability help to determine a runner's running style. However, determining whether a change is due to the measurement or to a specific condition such as an injury is a matter of debate, as no recommendation on the number of steps required to obtain reliable assessments exists. RESEARCH QUESTION What is the optimal number of steps required to measure different spatio-temporal parameters and study their variability at different running speeds? METHODS Twenty-five runners performed three experimental sessions of three bouts of treadmill running at 8, 10 and 12 km/h separated by 24 h. We measured cadence, stride, step, contact and flight time. We calculated the duty factor and the leg stiffness index (Kleg). Mean spatio-temporal parameters and linear (coefficient of variation, standard deviation) and non-linear (Higuchi fractal index, α1 coefficient of detrended fluctuation analysis) analyses were computed for different numbers of steps. Relative reliability was determined using the intraclass coefficient correlation. The minimal number of steps which present a good reliability level was considered as the optimal number of steps for measurement. Absolute reliability was assessed by calculating minimal detectable change. RESULTS To assess the mean values of spatio-temporal running parameters, between 16 and 150 steps were required. We were unable to obtain an optimal number of steps for cadence, stride and step-time variabilities for all speeds. For the linear analyses, we deduced the optimal number of steps for Kleg and the contact time (around 350 steps). Non-linear analyses measurements required between 350 and 540 steps, depending on the parameter. SIGNIFICANCE Researchers and clinicians should optimize experimental conditions (number of steps and running speed) depending on the parameter or the variability analysis targeted. Future studies must use absolute reliability metrics to report changes in response to a specific condition with no bias due to measurement error.
Collapse
Affiliation(s)
- Antoine Godin
- Université de Franche-Comté, SINERGIES, Besançon F-25000, France; Université de Franche-Comté, Plateforme Exercice Performance Santé Innovation, Besançon F-25000, France.
| | - Lucas Rouget
- Université de Franche-Comté, SINERGIES, Besançon F-25000, France
| | - Esther Eustache
- Institut des Sciences du Sport de l'Université de Lausanne, Lausanne, Switzerland
| | - Laurent Mourot
- Université de Franche-Comté, SINERGIES, Besançon F-25000, France; Université de Franche-Comté, Plateforme Exercice Performance Santé Innovation, Besançon F-25000, France; Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada
| | - Yoshimasa Sagawa
- Université de Franche-Comté, CHU Besançon, LINC, Besançon F-25000, France
| |
Collapse
|
4
|
Differences between Systems Using Optical and Capacitive Sensors in Treadmill-Based Spatiotemporal Analysis of Level and Sloping Gait. SENSORS 2022; 22:s22072790. [PMID: 35408404 PMCID: PMC9003327 DOI: 10.3390/s22072790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 12/10/2022]
Abstract
Modern technology has enabled researchers to analyze gait with great accuracy and in various conditions based on the needs of the trainees. The purpose of the study was to investigate the agreement between systems equipped with optical and capacitive sensors in the analysis of treadmill-based level and sloping gait. The spatiotemporal parameters of gait were measured in 30 healthy college-level students during barefoot walking on 0% (level), -10% and -20% (downhill) and +10% and +20% (uphill) slopes at hiking-related speeds using an optoelectric cell system and an instrumented treadmill. Inter-system agreement was assessed using the Intraclass Correlation Coefficients (ICCs) and the 95% limits of agreement. Our findings revealed excellent ICCs for the temporal and between moderate to excellent ICCs for the spatial parameters of gait. Walking downhill and on a 10% slope demonstrated better inter-system agreement compared to walking uphill and on a 20% slope. Inter-system agreement regarding the duration of gait phases was increased by increasing the number of LEDs used by the optoelectric cell system to detect the contact event. The present study suggests that systems equipped with optical and capacitive sensors can be used interchangeably in the treadmill-based spatiotemporal analysis of level and sloping gait.
Collapse
|
5
|
Scataglini S, Verwulgen S, Roosens E, Haelterman R, Van Tiggelen D. Measuring Spatiotemporal Parameters on Treadmill Walking Using Wearable Inertial System. SENSORS (BASEL, SWITZERLAND) 2021; 21:4441. [PMID: 34209518 PMCID: PMC8271716 DOI: 10.3390/s21134441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022]
Abstract
This study aims to measure and compare spatiotemporal gait parameters in nineteen subjects using a full wearable inertial mocap system Xsens (MVN Awinda, Netherlands) and a photoelectronic system one-meter OptoGaitTM (Microgait, Italy) on a treadmill imposing a walking speed of 5 km/h. A total of eleven steps were considered for each subject constituting a dataset of 209 samples from which spatiotemporal parameters (SPT) were calculated. The step length measurement was determined using two methods. The first one considers the calculation of step length based on the inverted pendulum model, while the second considers an anthropometric approach that correlates the stature with an anthropometric coefficient. Although the absolute agreement and consistency were found for the calculation of the stance phase, cadence and gait cycle, from our study, differences in SPT were found between the two systems. Mean square error (MSE) calculation of their speed (m/s) with respect to the imposed speed on a treadmill reveals a smaller error (MSE = 0.0008) using the OptoGaitTM. Overall, our results indicate that the accurate detection of heel strike and toe-off have an influence on phases and sub-phases for the entire acquisition. Future study in this domain should investigate how to design and integrate better products and algorithms aiming to solve the problematic issues already identified in this study without limiting the user's need and performance in a different environment.
Collapse
Affiliation(s)
- Sofia Scataglini
- Center for Physical Medicine and Rehabilitation, Military Hospital Queen Astrid, Rue Bruyn 200, 1120 Bruxelles, Belgium; (E.R.); (D.V.T.)
- Department of Mathematics, Royal Military Academy, Rue Hobbema 8, 1000 Bruxelles, Belgium;
- Department of Product Development, Faculty of Design Science, University of Antwerp, 2000 Antwerp, Belgium;
| | - Stijn Verwulgen
- Department of Product Development, Faculty of Design Science, University of Antwerp, 2000 Antwerp, Belgium;
| | - Eddy Roosens
- Center for Physical Medicine and Rehabilitation, Military Hospital Queen Astrid, Rue Bruyn 200, 1120 Bruxelles, Belgium; (E.R.); (D.V.T.)
| | - Robby Haelterman
- Department of Mathematics, Royal Military Academy, Rue Hobbema 8, 1000 Bruxelles, Belgium;
| | - Damien Van Tiggelen
- Center for Physical Medicine and Rehabilitation, Military Hospital Queen Astrid, Rue Bruyn 200, 1120 Bruxelles, Belgium; (E.R.); (D.V.T.)
| |
Collapse
|
6
|
Marmelat V, Duncan A, Meltz S, Meidinger RL, Hellman AM. Fractal auditory stimulation has greater benefit for people with Parkinson's disease showing more random gait pattern. Gait Posture 2020; 80:234-239. [PMID: 32554147 PMCID: PMC7375405 DOI: 10.1016/j.gaitpost.2020.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/20/2020] [Accepted: 05/17/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Healthy gait dynamics are characterized by the presence of fractal, persistent stride-to-stride variations, which become more random with Parkinson's disease (PD). Rhythmic auditory stimulation with fractal beat-to-beat variations can change gait dynamics in people with PD toward more persistence. RESEARCH QUESTION How does gait in people with PD change when synchronizing steps with fractal melodic metronomes with different step-to-beat ratios, and which stimulus do they prefer? METHODS In this cross-sectional study, 15 people with PD and 15 healthy older adults walked over-ground in three conditions: self-paced, paced by a fractal auditory stimulus with a 1:1 step-to-beat ratio ('metronome'), and fractal auditory stimulus with a 1:2 step-to-beat ratio ('music'). Gait dynamics were recorded with instrumented insoles, and detrended fluctuation analysis (DFA) was applied to the series of stride time intervals. Stimuli preference was assessed using Likert-like scales and open-ended questions. ANOVAs were used to compare mean, coefficient of variation, α-DFA, and the responses from the continuous Likert scales. Pearson correlations were used to assess the relationship between 'music' and 'metronome' enjoyment or difficulty with gait outcomes, and to determine the association between baseline α-DFA and changes due to the stimuli. RESULTS Our major findings are that (i) stride-to-stride variations were more persistent with the 'metronome' compared to baseline for both groups, (ii) the effect was greater for people with lower α-DFA at baseline (i.e., more random stride-to-stride variations), and (iii) both groups found the 'metronome' less difficult to synchronize with. SIGNIFICANCE This study showed that people with PD and healthy older adults walk with higher statistical persistence in their stride-to-stride variations when instructed to synchronize their steps with a fractal stimulus. Participants with lower persistence at baseline benefited the most from the fractal 'metronome', highlighting the importance to develop patient-centered tests and interventions.
Collapse
Affiliation(s)
- Vivien Marmelat
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Nebraska, 68184, United States of America,Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, 68198, United States of America
| | - Austin Duncan
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Nebraska, 68184, United States of America
| | - Shane Meltz
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Nebraska, 68184, United States of America
| | - Ryan L. Meidinger
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Nebraska, 68184, United States of America
| | - Amy M. Hellman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, 68198, United States of America
| |
Collapse
|