1
|
Simbanegavi TT, Makuvara Z, Marumure J, Alufasi R, Karidzagundi R, Chaukura N, Musvuugwa T, Okiobe ST, Rzymski P, Gwenzi W. Are earthworms the victim, facilitator or antidote of antibiotics and antibiotic resistance at the soil-animal-human interface? A One-Health perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173882. [PMID: 38866146 DOI: 10.1016/j.scitotenv.2024.173882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The transfer of antibiotics and antibiotic resistance (AR) to the soil systems poses ecological hazards to various organisms, including earthworms. Understanding the complex interactions between earthworms, antibiotics, and AR in the soil system requires a comprehensive assessment. Hence, the present review investigates the behaviour, fate, impacts, and mechanisms involved in the interaction of earthworms with antibiotics and AR. The antibiotics and AR detected in earthworms and their associated media, such as vermicompost, are presented, but several other antibiotics and AR widely detected in soils remain understudied. As receptors and bioassay organisms, earthworms are adversely affected by antibiotics and AR causing (1) acute and chronic toxicity, and (2) emergence of AR in previously susceptible earthworm gut microbiota, respectively. The paper also highlights that, apart from this toxicity, earthworms can also mitigate against antibiotics, antibiotic-resistant bacteria and antibiotic-resistance genes by reducing bacterial diversity and abundance. The behaviour and fate processes, including biodegradation pathways, biomarkers of antibiotics and AR in earthworms, are discussed. In addition, the factors controlling the behaviour and fate of antibiotics and AR and their interactions with earthworms are discussed. Overall, earthworms mitigate antibiotics and AR via various proximal and distal mechanisms, while dual but contradictory functions (i.e., mitigatory and facilitatory) were reported for AR. We recommend that future research based on the One-World-One-Health approach should address the following gaps: (1) under-studied antibiotics and AR, (2) degradation mechanisms and pathways of antibiotics, (3) effects of environmentally relevant mixtures of antibiotics, (4) bio-augmentation in earthworm-based bioremediation of antibiotics, (5) long-term fate of antibiotics and their metabolites, (6) bio-transfers of antibiotics and AR by earthworms, (7) development of earthworm biomarkers for antibiotics and AR, (8) application of earthworm-based bioremediation of antibiotics and AR, (9) cascading ecological impacts of antibiotics and AR on earthworms, and (10) pilot-scale field applications of earthworm-based bioremediation systems.
Collapse
Affiliation(s)
- Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, P. O. Box MP 167, Mount Pleasant, Harare, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Rangarirayi Karidzagundi
- Materials Development Unit, Zimbabwe Open University, P.O. Box MP1119, Mount Pleasant, Harare, Zimbabwe
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley 8301, South Africa
| | - Tendai Musvuugwa
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley 8301, South Africa
| | - Simon Thierry Okiobe
- Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Willis Gwenzi
- Formerly Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany; Formerly Alexander von Humboldt Fellow and Guest Professor, Grassland Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe.
| |
Collapse
|
2
|
Ibekwe AM, Bhattacharjee AS, Phan D, Ashworth D, Schmidt MP, Murinda SE, Obayiuwana A, Murry MA, Schwartz G, Lundquist T, Ma J, Karathia H, Fanelli B, Hasan NA, Yang CH. Potential reservoirs of antimicrobial resistance in livestock waste and treated wastewater that can be disseminated to agricultural land. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162194. [PMID: 36781130 DOI: 10.1016/j.scitotenv.2023.162194] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Livestock manure, dairy lagoon effluent, and treated wastewater are known reservoirs of antibiotic resistance genes (ARGs), antibiotic-resistant bacteria (ARB), and virulence factor genes (VFGs), and their application to agricultural farmland could be a serious public health threat. However, their dissemination to agricultural lands and impact on important geochemical pathways such as the nitrogen (N) cycle have not been jointly explored. In this study, shotgun metagenomic sequencing and analyses were performed to examine the diversity and composition of microbial communities, ARGs, VFGs, and N cycling genes in different livestock manure/lagoon and treated wastewater collected from concentrated animal feeding operations (CAFOs) and a municipal wastewater treatment plant along the west coast of the United States. Multivariate analysis showed that diversity indices of bacterial taxa from the different microbiomes were not significantly different based on InvSimpson (P = 0.05), but differences in ARG mechanisms were observed between swine manure and other microbiome sources. Comparative resistome profiling showed that ARGs in microbiome samples belonged to four core resistance classes: aminoglycosides (40-55 %), tetracyclines (30-45 %), beta-lactam-resistance (20-35 %), macrolides (18-30 %), and >50 % of the VFGs that the 24 microbiomes harbored were phyletically affiliated with two bacteria, Bacteroidetes fragilis and Enterobacter aerogenes. Network analysis based on Spearman correlation showed co-occurrence patterns between several genes such as transporter-gene and regulator, efflux pump and involved-in-polymyxin- resistance, aminoglycoside, beta-lactam, and macrolide with VFGs and bacterial taxa such as Firmicutes, Candidatus Themoplasmatota, Actinobacteria, and Bacteroidetes. Metabolic reconstruction of metagenome-assembled genome (MAGs) analysis showed that the most prevalent drug resistance mechanisms were associated with carbapenem resistance, multidrug resistance (MDR), and efflux pump. Bacteroidales was the main taxa involved in dissimilatory nitrate reduction (DNRA) in dairy lagoon effluent. This study demonstrates that the dissemination of waste from these sources can increase the spread of ARGs, ARB, and VFGs into agricultural lands, negatively impacting both soil and human health.
Collapse
Affiliation(s)
- Abasiofiok M Ibekwe
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA.
| | - Ananda S Bhattacharjee
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA; Department of Environmental Sciences, University of California, Riverside, CA 92507, USA
| | - Duc Phan
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, University of California, Riverside, 92507, CA, USA
| | - Daniel Ashworth
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA
| | - Michael P Schmidt
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA
| | - Shelton E Murinda
- Animal and Veterinary Sciences Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Amarachukwu Obayiuwana
- Department of Biological Sciences, Augustine University Ilara-Epe, Lagos State 106101, Nigeria
| | - Marcia A Murry
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Gregory Schwartz
- BioResource and Agricultural Engineering Department, College of Agriculture, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Tryg Lundquist
- Civil and Environmental Engineering Department, College of Engineering, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Jincai Ma
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | | | | | - Nur A Hasan
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA; EzBiome Inc, MD, USA
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
3
|
Sukumar S, Wang F, Simpson CA, Willet CE, Chew T, Hughes TE, Bockmann MR, Sadsad R, Martin FE, Lydecker HW, Browne GV, Davis KM, Bui M, Martinez E, Adler CJ. Development of the oral resistome during the first decade of life. Nat Commun 2023; 14:1291. [PMID: 36894532 PMCID: PMC9998430 DOI: 10.1038/s41467-023-36781-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
Antibiotic overuse has promoted the spread of antimicrobial resistance (AMR) with significant health and economic consequences. Genome sequencing reveals the widespread presence of antimicrobial resistance genes (ARGs) in diverse microbial environments. Hence, surveillance of resistance reservoirs, like the rarely explored oral microbiome, is necessary to combat AMR. Here, we characterise the development of the paediatric oral resistome and investigate its role in dental caries in 221 twin children (124 females and 97 males) sampled at three time points over the first decade of life. From 530 oral metagenomes, we identify 309 ARGs, which significantly cluster by age, with host genetic effects detected from infancy onwards. Our results suggest potential mobilisation of ARGs increases with age as the AMR associated mobile genetic element, Tn916 transposase was co-located with more species and ARGs in older children. We find a depletion of ARGs and species in dental caries compared to health. This trend reverses in restored teeth. Here we show the paediatric oral resistome is an inherent and dynamic component of the oral microbiome, with a potential role in transmission of AMR and dysbiosis.
Collapse
Affiliation(s)
- Smitha Sukumar
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Fang Wang
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Carra A Simpson
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, US
| | - Cali E Willet
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW, Australia
| | - Tracy Chew
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW, Australia
| | - Toby E Hughes
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Adelaide Dental School, University of Adelaide, Adelaide, SA, Australia
| | | | - Rosemarie Sadsad
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW, Australia
| | - F Elizabeth Martin
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Henry W Lydecker
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW, Australia
| | - Gina V Browne
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Institute of Dental Research, Westmead Centre for Oral Health, Westmead, NSW, Australia
| | - Kylie M Davis
- Adelaide Dental School, University of Adelaide, Adelaide, SA, Australia
| | - Minh Bui
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Elena Martinez
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, NSW, Australia
| | - Christina J Adler
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Pillay S, Calderón-Franco D, Urhan A, Abeel T. Metagenomic-based surveillance systems for antibiotic resistance in non-clinical settings. Front Microbiol 2022; 13:1066995. [PMID: 36532424 PMCID: PMC9755710 DOI: 10.3389/fmicb.2022.1066995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 08/12/2023] Open
Abstract
The success of antibiotics as a therapeutic agent has led to their ineffectiveness. The continuous use and misuse in clinical and non-clinical areas have led to the emergence and spread of antibiotic-resistant bacteria and its genetic determinants. This is a multi-dimensional problem that has now become a global health crisis. Antibiotic resistance research has primarily focused on the clinical healthcare sectors while overlooking the non-clinical sectors. The increasing antibiotic usage in the environment - including animals, plants, soil, and water - are drivers of antibiotic resistance and function as a transmission route for antibiotic resistant pathogens and is a source for resistance genes. These natural compartments are interconnected with each other and humans, allowing the spread of antibiotic resistance via horizontal gene transfer between commensal and pathogenic bacteria. Identifying and understanding genetic exchange within and between natural compartments can provide insight into the transmission, dissemination, and emergence mechanisms. The development of high-throughput DNA sequencing technologies has made antibiotic resistance research more accessible and feasible. In particular, the combination of metagenomics and powerful bioinformatic tools and platforms have facilitated the identification of microbial communities and has allowed access to genomic data by bypassing the need for isolating and culturing microorganisms. This review aimed to reflect on the different sequencing techniques, metagenomic approaches, and bioinformatics tools and pipelines with their respective advantages and limitations for antibiotic resistance research. These approaches can provide insight into resistance mechanisms, the microbial population, emerging pathogens, resistance genes, and their dissemination. This information can influence policies, develop preventative measures and alleviate the burden caused by antibiotic resistance.
Collapse
Affiliation(s)
- Stephanie Pillay
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
| | | | - Aysun Urhan
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
5
|
Srinivas M, O’Sullivan O, Cotter PD, van Sinderen D, Kenny JG. The Application of Metagenomics to Study Microbial Communities and Develop Desirable Traits in Fermented Foods. Foods 2022; 11:3297. [PMID: 37431045 PMCID: PMC9601669 DOI: 10.3390/foods11203297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
The microbial communities present within fermented foods are diverse and dynamic, producing a variety of metabolites responsible for the fermentation processes, imparting characteristic organoleptic qualities and health-promoting traits, and maintaining microbiological safety of fermented foods. In this context, it is crucial to study these microbial communities to characterise fermented foods and the production processes involved. High Throughput Sequencing (HTS)-based methods such as metagenomics enable microbial community studies through amplicon and shotgun sequencing approaches. As the field constantly develops, sequencing technologies are becoming more accessible, affordable and accurate with a further shift from short read to long read sequencing being observed. Metagenomics is enjoying wide-spread application in fermented food studies and in recent years is also being employed in concert with synthetic biology techniques to help tackle problems with the large amounts of waste generated in the food sector. This review presents an introduction to current sequencing technologies and the benefits of their application in fermented foods.
Collapse
Affiliation(s)
- Meghana Srinivas
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- School of Microbiology, University College Cork, T12 CY82 Cork, Ireland
| | - Orla O’Sullivan
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- School of Microbiology, University College Cork, T12 CY82 Cork, Ireland
| | - John G. Kenny
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| |
Collapse
|
6
|
Qiu T, Huo L, Guo Y, Gao M, Wang G, Hu D, Li C, Wang Z, Liu G, Wang X. Metagenomic assembly reveals hosts and mobility of common antibiotic resistome in animal manure and commercial compost. ENVIRONMENTAL MICROBIOME 2022; 17:42. [PMID: 35953830 PMCID: PMC9367140 DOI: 10.1186/s40793-022-00437-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/29/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Antibiotics and antibiotic resistance genes (ARGs) used in intensive animal farming threaten human health worldwide; however, the common resistome, ARG mobility, and ARG host composition in different animal manures and mixed manure composts remain unclear. In the present study, metagenomic assembly and cross-sample mapping were used to comprehensively decipher the common resistome and its potential mobility and hosts in animal manure and composts. RESULTS In total, 201 ARGs were shared among different animal (layer, broiler, swine, beef cow, and dairy cow) manures and accounted for 86-99% of total relative abundance of ARGs. Except for multidrug, sulfonamide, and trimethoprim resistance genes, the relative abundance of most ARGs in composts was significantly lower than that in animal manure. Procrustes analysis indicated that antibiotic residues positively correlated with ARG composition in manure but not in composts. More than 75% ARG subtypes were shared between plasmids and chromosomes in our samples. Transposases could play a pivotal role in mediating the transfer of ARGs between different phyla in animal manure and composting. Cross-sample mapping to contigs carrying ARGs showed that the hosts of common resistome in manure had preference on animal species, and the dominant genus of ARG host shifted from Enterococcus in manure to Pseudomonas in composts. The broad host range and linking with diverse mobile genetic elements (MGEs) were two key factors for ARGs, such as sul1 and aadA, which could survive during composting. The multidrug resistance genes represented the dominant ARGs in pathogenic antibiotic-resistant bacteria in manure but could be effectively controlled by composting. CONCLUSIONS Our experiments revealed the common resistome in animal manure, classified and relative quantified the ARG hosts, and assessed the mobility of ARGs. Composting can mitigate ARGs in animal manure by altering the bacterial hosts; however, persistent ARGs can escape from the removal because of diverse host range and MGEs. Our findings provide an overall background for source tracking, risk assessment, and control of livestock ARGs.
Collapse
Affiliation(s)
- Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Linhe Huo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Guoliang Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Dong Hu
- Institute of Agro-Resources and Environment, Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Cheng Li
- Institute of Quality Standard and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Zhanwu Wang
- Institute of Agro-Resources and Environment, Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Guiming Liu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| | - Xuming Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| |
Collapse
|
7
|
Koorakula R, Schiavinato M, Ghanbari M, Wegl G, Grabner N, Koestelbauer A, Klose V, Dohm JC, Domig KJ. Metatranscriptomic Analysis of the Chicken Gut Resistome Response to In-Feed Antibiotics and Natural Feed Additives. Front Microbiol 2022; 13:833790. [PMID: 35495718 PMCID: PMC9048739 DOI: 10.3389/fmicb.2022.833790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of resistance against common antibiotics in the gut microbiota is a major issue for both human and livestock health. This highlights the need for understanding the impact of such application on the reservoir of antibiotic resistance genes in poultry gut and devising means to circumvent the potential resistome expansion. Phytogenic feed additives (PFAs) are potential natural alternative to antibiotic to improve animal health and performance, supposedly via positively affecting the gut microbial ecosystem, but there is little systematic information available. In this time-course study, we applied a shotgun meta-transcriptomics approach to investigate the impact of a PFA product as well as the commonly used antibiotic, zinc bacitracin either at AGP concentration or therapeutic concentration on the gut microbiome and resistome of broiler chickens raised for 35 days. Over the course of the trial, PFA treatments increased the abundance of Firmicutes such as Lactobacillus and resulted in a lower abundance of Escherichia, while the latter group increased significantly in the feces of chickens that received either AGP or AB doses of bacitracin. Tetracycline resistance and aminoglycoside resistance were the predominant antibiotic resistance gene (ARG) classes found, regardless of the treatment. PFA application resulted in a decrease in abundance of ARGs compared to those in the control group and other antibiotic treatment groups. In summary, the findings from this study demonstrate the potential of phytogenic feed additives could be an alternative to antibiotics in poultry farming, with the added benefit of counteracting antimicrobial resistance development.
Collapse
Affiliation(s)
- Raju Koorakula
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria.,Competence Centre for Feed and Food Quality, Safety and Innovation (FFoQSI), Tulln, Austria
| | - Matteo Schiavinato
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | - Juliane C Dohm
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Konrad J Domig
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
8
|
Zhuang M, Achmon Y, Cao Y, Liang X, Chen L, Wang H, Siame BA, Leung KY. Distribution of antibiotic resistance genes in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117402. [PMID: 34051569 DOI: 10.1016/j.envpol.2021.117402] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/03/2021] [Accepted: 05/16/2021] [Indexed: 05/12/2023]
Abstract
The prevalence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the microbiome is a major public health concern globally. Many habitats in the environment are under threat due to excessive use of antibiotics and evolutionary changes occurring in the resistome. ARB and ARGs from farms, cities and hospitals, wastewater treatment plants (WWTPs) or as water runoffs, may accumulate in water, soil, and air. We present a global picture of the resistome by examining ARG-related papers retrieved from PubMed and published in the last 30 years (1990-2020). Natural Language Processing (NLP) was used to retrieve 496,640 papers, out of which 9374 passed the filtering test and were further analyzed to determine the distribution and diversity of ARG subtypes. The papers revealed seven major antibiotic families together with their respective ARG subtypes in different habitats on six continents. Asia, especially China, had the highest number of ARGs related papers compared to other countries/regions/continents. ARGs belonging to multidrug, glycopeptide, and β-lactam families were the most common in reports from hospitals and sulfonamide and tetracycline families were common in reports from farms, WWTPs, water and soil. We also highlight the 'omics' tools used in resistome research, describe some factors that shape the development of resistome, and suggest future work needed to better understand the resistome. The goal was to show the global nature of ARB and ARGs in order to encourage collaborate research efforts aimed at reducing the negative impacts of antibiotic resistance on the One Health concept.
Collapse
Affiliation(s)
- Mei Zhuang
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, 515063, China; Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yigal Achmon
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, 515063, China; Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yuping Cao
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, 515063, China; Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Xiaomin Liang
- Department of Computer Science, College of Engineering, Shantou University, Shantou, 515063, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, 515063, China; Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, Shantou University, Shantou, 515063, China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Shantou, 515063, China
| | - Bupe A Siame
- Department of Biology, Trinity Western University, Langley, British Columbia, V2Y 1Y1, Canada
| | - Ka Yin Leung
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, 515063, China; Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
9
|
Liang Z, Zhang Y, He T, Yu Y, Liao W, Li G, An T. The formation mechanism of antibiotic-resistance genes associated with bacterial communities during biological decomposition of household garbage. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122973. [PMID: 32492618 DOI: 10.1016/j.jhazmat.2020.122973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Food wastes are significant reservoir of antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) available for exchange with clinical pathogens. However, food wastes-related changes of antibiotic resistance in long-period decomposition have been overlooked. Here, we evaluated the comprehensive ARG profile and its association with microbial communities, explained how this might vary with household garbage decomposition. Average of 128, 150 and 91 ARGs were detected in meat, vegetable and fruit wastes, respectively, with multidrug and tetracycline as the predominant ARG types. ARG abundance significantly increased at initial stage of waste fermentation and then decreased. High abundance of Eubacterium-coprostanoligenes, Sporanaerobacter, Peptoniphilus, Peptostreptococcus might be explained for the high relative abundance of ARGs in meat, while high abundance of Advenella, Prevotella, Solobacterium was attributed to the high diversity of ARGs in vegetables. Significant correlations were observed among volatile organic compounds, mobile genetic elements and ARGs, implying that they might contribute to transfer and transport of ARGs. Network analysis revealed that aph(2')-Id-01, acrA-05, tetO-1 were potential ARG indicators, while Hathewaya, Paraclostridium and Prevotellaceae were possible hosts of ARGs. Our work might unveil underlining mechanism of the effects of food wastes decomposition on development and spread of ARGs in environment and also clues to ARG mitigation.
Collapse
Affiliation(s)
- Zhishu Liang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuna Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tao He
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yun Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wen Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
10
|
Neher DA, Limoges MA, Weicht TR, Sharma M, Millner PD, Donnelly C. Bacterial Community Dynamics Distinguish Poultry Compost from Dairy Compost and Non-Amended Soils Planted with Spinach. Microorganisms 2020; 8:microorganisms8101601. [PMID: 33080970 PMCID: PMC7603165 DOI: 10.3390/microorganisms8101601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to determine whether and how poultry litter compost and dairy manure compost alter the microbial communities within field soils planted with spinach. In three successive years, separate experimental plots on two fields received randomly assigned compost treatments varying in animal origin: dairy manure (DMC), poultry litter (PLC), or neither (NoC). The composition and function of bacterial and fungal communities were characterized by the amplicon sequencing of marker genes and by the ecoenzyme activity, respectively. The temporal autocorrelation within and among years was adjusted by principal response curves (PRC) to analyze the effect of compost on community composition among treatments. Bacteria in the phylum Bacteriodetes, classes Flavobacteriia and Spingobacteriales (Fluviicola, Flavobacteriia, and Pedobacter), were two to four times more abundant in soils amended with PLC than DMC or NoC consistently among fields and years. Fungi in the phylum Ascomycota were relatively abundant, but their composition was field-specific and without treatment differences. The ecoenzyme data verify that the effects of PLC and DMC on soil communities are based on their microbial composition and not a response to the C source or nutrient content of the compost.
Collapse
Affiliation(s)
- Deborah A. Neher
- Department of Plant and Soil Science, University of Vermont, Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA;
- Correspondence: (D.A.N.); (C.D.); Tel.: +01-802-656-0474 (D.A.N.)
| | - Marie A. Limoges
- Department of Nutrition and Food Sciences, University of Vermont, Marsh Life Science, 109 Carrigan Drive, Burlington, VT 05405, USA;
| | - Thomas R. Weicht
- Department of Plant and Soil Science, University of Vermont, Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA;
| | - Manan Sharma
- United States Department of Agriculture Research Service, 10300 Baltimore Ave, Beltsville, MD 20705, USA; (M.S.); (P.D.M.)
| | - Patricia D. Millner
- United States Department of Agriculture Research Service, 10300 Baltimore Ave, Beltsville, MD 20705, USA; (M.S.); (P.D.M.)
| | - Catherine Donnelly
- Department of Nutrition and Food Sciences, University of Vermont, Marsh Life Science, 109 Carrigan Drive, Burlington, VT 05405, USA;
- Correspondence: (D.A.N.); (C.D.); Tel.: +01-802-656-0474 (D.A.N.)
| |
Collapse
|