1
|
Immunomodulatory Responses of Subcapsular Sinus Floor Lymphatic Endothelial Cells in Tumor-Draining Lymph Nodes. Cancers (Basel) 2022; 14:cancers14153602. [PMID: 35892863 PMCID: PMC9330828 DOI: 10.3390/cancers14153602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor-draining lymph nodes (LNs), composed of lymphocytes, antigen-presenting cells, and stromal cells, are highly relevant for tumor immunity and the efficacy of immunotherapies. Lymphatic endothelial cells (LECs) represent an important stromal cell type within LNs, and several distinct subsets of LECs that interact with various immune cells and regulate immune responses have been identified. In this study, we used single-cell RNA sequencing (scRNA-seq) to characterize LECs from LNs draining B16F10 melanomas compared to non-tumor-draining LNs. Several upregulated genes with immune-regulatory potential, especially in LECs lining the subcapsular sinus floor (fLECs), were identified and validated. Interestingly, some of these genes, namely, podoplanin, CD200, and BST2, affected the adhesion of macrophages to LN LECs in vitro. Congruently, lymphatic-specific podoplanin deletion led to a decrease in medullary sinus macrophages in tumor-draining LNs in vivo. In summary, our data show that tumor-derived factors induce transcriptional changes in LECs of the draining LNs, especially the fLECs, and that these changes may affect tumor immunity. We also identified a new function of podoplanin, which is expressed on all LECs, in mediating macrophage adhesion to LECs and their correct localization in LN sinuses.
Collapse
|
2
|
Wang J, Wu X, Kang Y, Zhang L, Niu H, Qu J, Wang Y, Ji D, Li Y. Integrative analysis of circRNAs from Yangtze River Delta white goat neck skin tissue by high-throughput sequencing (circRNA-seq). Anim Genet 2022; 53:405-415. [PMID: 35383992 DOI: 10.1111/age.13198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/16/2022] [Accepted: 03/22/2022] [Indexed: 01/22/2023]
Abstract
The Yangtze River Delta white goat is a unique goat species that can produce superior-quality brush hair. The formation of this brush hair is controlled by a series of critical genes and related signaling pathways. Circular RNAs (circRNAs), are ubiquitous endogenous non-coding RNAs that regulate many biological and physiological processes in mammals. However, little is known about the potential regulatory role of circRNAs on superior-quality brush hair formation in Yangtze River Delta white goat. In this study, high-throughput sequencing technology was used to only detect circRNAs in the neck skin tissue of normal-quality goats (NHQs) and superior-quality goats (HQs). A total of 61 803 circRNAs were identified and 32 of them were differentially expressed in the NHQ group vs. the HQ group. Functional enrichment analysis showed that the source gene of differentially expressed circRNAs (DE-circRNAs) was enriched mostly in platelet activation and the focal adhesion signal pathway. Action mechanism analysis revealed that DE-circRNAs could sponge to many identified miRNAs, including miR-31, miR-125b, miR-let-7a and miR-149-5p, which have important roles in goat hair follicle stem cell growth, hair follicle development and morphogenesis. Altogether, our findings provide a valuable basis for studying circRNAs involved in superior-quality brush hair traits and meanwhile advance our understanding of circRNA complex regulation mechanisms in Yangtze River Delta white goat skin hair follicle development.
Collapse
Affiliation(s)
- Jian Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Xi Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yan Kang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liuming Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haoyuan Niu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jingwen Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanhu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Dejun Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Yongjun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Zhao B, Wu C, Sammad A, Ma Z, Suo L, Wu Y, Fu X. The fiber diameter traits of Tibetan cashmere goats are governed by the inherent differences in stress, hypoxic, and metabolic adaptations: an integrative study of proteome and transcriptome. BMC Genomics 2022; 23:191. [PMID: 35255833 PMCID: PMC8903710 DOI: 10.1186/s12864-022-08422-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Background Tibetan cashmere goats are served as a valuable model for high altitude adaptation and hypoxia complications related studies, while the cashmere produced by these goats is an important source of income for the herders. The aim of this study was to investigate the differences in protein abundance underlying the fine (average 12.20 ± 0.03 μm of mean fiber diameter) and coarse cashmere (average 14.67 ± 0.05 μm of mean fiber diameter) producing by Tibetan cashmere goats. We systematically investigated the genetic determinants of fiber diameter by integrated analysis with proteomic and transcriptomic datasets from skin tissues of Tibetan cashmere goats. Results We identified 1980 proteins using a label-free proteomics approach. They were annotated to three different databases, while 1730 proteins were mapped to the original protein coding genes (PCGs) of the transcriptomic study. Comparative analyses of cashmere with extremely fine vs. coarse phenotypes yielded 29 differentially expressed proteins (DEPs), for instance, APOH, GANAB, AEBP1, CP, CPB2, GPR142, VTN, IMPA1, CTSZ, GLB1, and HMCN1. Functional enrichment analysis of these DEPs revealed their involvement in oxidation-reduction process, cell redox homeostasis, metabolic, PI3K-Akt, MAPK, and Wnt signaling pathways. Transcription factors enrichment analysis revealed the proteins mainly belong to NF-YB family, HMG family, CSD family. We further validated the protein abundance of four DEPs (GC, VTN, AEBP1, and GPR142) through western blot, and considered they were the most potential candidate genes for cashmere traits in Tibetan cashmere goats. Conclusions These analyses indicated that the major biological variations underlying the difference of cashmere fiber diameter in Tibetan cashmere goats were attributed to the inherent adaptations related to metabolic, hypoxic, and stress response differences. This study provided novel insights into the breeding strategies for cashmere traits and enhance the understanding of the biological and genetic mechanisms of cashmere traits in Tibetan cashmere goats. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08422-x.
Collapse
Affiliation(s)
- Bingru Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Abdul Sammad
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhen Ma
- Key Laboratory of Genetics Breeding and Reproduction of the Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Langda Suo
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yujiang Wu
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China.
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of the Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China.
| |
Collapse
|
4
|
The Role of Podoplanin in Skin Diseases. Int J Mol Sci 2022; 23:ijms23031310. [PMID: 35163233 PMCID: PMC8836045 DOI: 10.3390/ijms23031310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/05/2023] Open
Abstract
Podoplanin is a sialomucin-like type I transmembrane receptor glycoprotein that is expressed specifically in lymphatic vessels, sebaceous glands, and hair follicles in normal skin. However, under pathological conditions podoplanin expression is upregulated in various cells, such as keratinocytes, fibroblasts, tumor cells, and inflammatory cells, and plays pivotal roles in different diseases. In psoriasis, podoplanin expression is induced in basal keratinocytes via the JAK-STAT pathway and contributes toward epidermal hyperproliferation. Podoplanin expression on keratinocytes can also promote IL-17 secretion from lymphocytes, promoting chronic inflammation. During wound healing, the podoplanin/CLEC-2 interaction between keratinocytes and platelets regulates re-epithelialization at the wound edge. In skin cancers, podoplanin expresses on tumor cells and promotes their migration and epithelial-mesenchymal transition, thereby accelerating invasion and metastasis. Podoplanin is also expressed in normal peritumoral cells, such as cancer-associated fibroblasts in melanoma and keratinocytes in extramammary Paget's disease, which promote tumor progression and predict aggressive behavior and poor prognosis. This review provides an overview of our current understanding of the mechanisms via which podoplanin mediates these pathological skin conditions.
Collapse
|
5
|
Wu Z, Hai E, Di Z, Ma R, Shang F, Wang M, Liang L, Rong Y, Pan J, Su R, Wang Z, Wang R, Zhang Y, Li J. Chi-miR-130b-3p regulates Inner Mongolia cashmere goat skin hair follicles in fetuses by targeting Wnt family member 10A. G3-GENES GENOMES GENETICS 2021; 11:6029023. [PMID: 33561234 PMCID: PMC8022718 DOI: 10.1093/g3journal/jkaa023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
The development of hair follicles (HFs) is dependent on interactions between epithelial cells and dermal fibroblasts, which may play an important role in maintaining the structure of HFs during their development and maturation. Wnt family member 10 (WNT10A) is a hub gene during HF development and maturation that may regulate the proliferation of dermal fibroblasts and epithelial cells through microRNAs (miRNAs) and messenger RNAs (mRNAs) to maintain the structural stability of HFs. In the present study, we confirmed that WNT10A is the target gene of chi-miR-130b-3p by real-time quantitative PCR, western blotting, and a dual-luciferase reporter gene assay. We successfully cultured fetal epithelial cells and dermal fibroblasts using the tissue block attachment method, and Cell Counting Kit-8 (CCK8) results showed that chi-miR-130b-3p regulates epithelial cell and dermal fibroblast proliferation by targeting WNT10A.
Collapse
Affiliation(s)
- Zhihong Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Erhan Hai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Zhengyang Di
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Rong Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Fangzheng Shang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Min Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Lili Liang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Jianfeng Pan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China.,Engineering Research Center for Goat Genetics and Breeding, Hohhot 010018, Inner Mongolia Autonomous Region, China
| | - Jinquan Li
- Engineering Research Center for Goat Genetics and Breeding, Hohhot 010018, Inner Mongolia Autonomous Region, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot 010018, Inner Mongolia Autonomous Region, China.,Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot 010018, China
| |
Collapse
|
6
|
Li KN, Tumbar T. Hair follicle stem cells as a skin-organizing signaling center during adult homeostasis. EMBO J 2021; 40:e107135. [PMID: 33880808 PMCID: PMC8167365 DOI: 10.15252/embj.2020107135] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cells are the essential source of building blocks for tissue homeostasis and regeneration. Their behavior is dictated by both cell-intrinsic cues and extrinsic cues from the microenvironment, known as the stem cell niche. Interestingly, recent work began to demonstrate that hair follicle stem cells (HFSCs) are not only passive recipients of signals from the surroundings, but also actively send out signals to modulate the organization and function of their own niches. Here, we discuss recent findings, and briefly refer to the old, on the interaction of HFSCs and their niches with the emphasis on the outwards signals from HFSCs toward their niches. We also highlight recent technology advancements that further promote our understanding of HFSC niches. Taken together, the HFSCs emerge as a skin-organizing center rich in signaling output for niche remodeling during various stages of adult skin homeostasis. The intricate crosstalk between HFSCs and their niches adds important insight to skin biology that will inform clinical and bioengineering fields aiming to build complete and functional 3D organotypic cultures for skin replacement therapies.
Collapse
Affiliation(s)
- Kefei Nina Li
- Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| | | |
Collapse
|
7
|
Wang J, Sui J, Mao C, Li X, Chen X, Liang C, Wang X, Wang SH, Jia C. Identification of Key Pathways and Genes Related to the Development of Hair Follicle Cycle in Cashmere Goats. Genes (Basel) 2021; 12:genes12020180. [PMID: 33513983 PMCID: PMC7911279 DOI: 10.3390/genes12020180] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
The development of hair follicle in cashmere goats shows significant periodic change, as with mice and humans. However, for cashmere goat with double-coat, the periodic change may be due to other regulatory molecules and signal pathways. To understand the mechanism of periodic development of hair follicle, we performed a weighted gene coexpression network analysis (WGCNA) to mine key genes and establish an interaction network by utilizing the NCBI public dataset. Ten coexpression modules, including 7689 protein-coding genes, were constructed by WGCNA, six of which are considered to be significantly related to the development of the hair follicle cycle. A functional enrichment analysis for each model showed that they are closely related to ECM- receptor interaction, focal adhesion, PI3K-Akt signaling pathway, estrogen signaling pathway, and so on. Combined with the analysis of differential expressed genes, 12 hub genes from coexpression modules were selected as candidate markers, i.e., COL1A1, C1QTNF6, COL1A2, AQP3, KRTAP3-1, KRTAP11-1, FA2H, NDUFS5, DERL2, MRPL14, ANTKMT and XAB2, which might be applied to improve cashmere production.
Collapse
|
8
|
Keratinocyte-Expressed Podoplanin is Dispensable for Multi-Step Skin Carcinogenesis. Cells 2020; 9:cells9061542. [PMID: 32599908 PMCID: PMC7348927 DOI: 10.3390/cells9061542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/21/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023] Open
Abstract
Podoplanin is a small transmembrane mucin-like glycoprotein that plays a crucial role in the development of the lung, heart and lymphatic vascular system. Its expression is upregulated in several types of human carcinomas and podoplanin levels in squamous cell carcinomas (SCCs) of the oral cavity and the lung correlate with cancer invasiveness, lymph node metastasis and shorter survival time of patients, indicating that podoplanin promotes tumor progression. However, its role during the early stages of carcinogenesis remain unclear. We generated mice with a specific deletion of podoplanin in epidermal keratinocytes (K5-Cre;Pdpnflox/flox mice) and subjected them to a multistep chemical skin carcinogenesis regimen. The rate of tumor initiation; the number, size and differentiation of tumors; and the malignant transformation rate were comparable in K5-Cre;Pdpnflox/flox mice and Pdpnflox/flox control mice. However, tumor cell invasion was reduced in K5-Cre;Pdpnflox/flox mice, in particular single cell invasion. Quantitative immunofluorescence analyses revealed that peritumoral lymphangiogenesis was reduced in K5-Cre;Pdpnflox/flox mice, whereas there were no major changes of tumor-associated immune cell subpopulations. Thus, keratinocyte-expressed podoplanin is dispensable for the early steps of skin carcinogenesis but contributes to the progression of established tumors.
Collapse
|