1
|
Cardamom ( Elettaria cardamomum (L.) Maton) Seeds Intake Increases Energy Expenditure and Reduces Fat Mass in Mice by Modulating Neural Circuits That Regulate Adipose Tissue Lipolysis and Mitochondrial Oxidative Metabolism in Liver and Skeletal Muscle. Int J Mol Sci 2023; 24:ijms24043909. [PMID: 36835337 PMCID: PMC9960522 DOI: 10.3390/ijms24043909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Cardamom seed (Elettaria cardamomum (L.) Maton; EC) is consumed in several countries worldwide and is considered a nutraceutical spice since it exerts antioxidant, anti-inflammatory, and metabolic activities. In obese individuals, EC intake also favors weight loss. However, the mechanism for these effects has not been studied. Here, we identified that EC modulates the neuroendocrine axis that regulates food intake, body weight, mitochondrial activity, and energy expenditure in mice. We fed C57BL/6 mice with diets containing 3%, 6%, or 12% EC or a control diet for 14 weeks. Mice fed the EC-containing diets gained less weight than control, despite slightly higher food intake. The lower final weight of EC-fed mice was due to lesser fat content but increased lean mass than control. EC intake increased lipolysis in subcutaneous adipose tissue, and reduced adipocyte size in subcutaneous, visceral, and brown adipose tissues. EC intake also prevented lipid droplet accumulation and increased mitochondrial content in skeletal muscle and liver. Accordingly, fasting and postprandial oxygen consumption, as well as fasting fat oxidation and postprandial glucose utilization were higher in mice fed with EC than in control. EC intake reduced proopiomelanocortin (POMC) mRNA content in the hypothalamic arcuate nucleus, without an impact on neuropeptide Y (NPY) mRNA. These neuropeptides control food intake but also influence the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-adrenal (HPA) axes. Thyrotropin-releasing hormone (TRH) mRNA expression in the hypothalamic paraventricular nucleus (PVN) and circulating triiodothyronine (T3) were lower in EC-fed mice than in control. This effect was linked with decreased circulating corticosterone and weight of adrenal glands. Our results indicate that EC modulates appetite, increases lipolysis in adipose tissue and mitochondrial oxidative metabolism in liver and skeletal muscle, leading to increased energy expenditure and lower body fat mass. These metabolic effects were ascribable to the modulation of the HPT and HPA axes. LC-MS profiling of EC found 11 phenolic compounds among which protocatechuic acid (23.8%), caffeic acid (21.06%) and syringic acid (29.25%) were the most abundant, while GC-MS profiling showed 16 terpenoids among which costunolide (68.11%), ambrial (5.3%) and cis-α-terpineol (7.99%) were identified. Extrapolation of mice-to-human EC intake was performed using the body surface area normalization equation which gave a conversion equivalent daily human intake dose of 76.9-308.4 mg bioactives for an adult of 60 kg that can be obtained from 14.5-58.3 g of cardamom seeds (18.5-74.2 g cardamom pods). These results support further exploration of EC as a coadjuvant in clinical practice.
Collapse
|
2
|
Redei EE, Udell ME, Solberg Woods LC, Chen H. The Wistar Kyoto Rat: A Model of Depression Traits. Curr Neuropharmacol 2023; 21:1884-1905. [PMID: 36453495 PMCID: PMC10514523 DOI: 10.2174/1570159x21666221129120902] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
There is an ongoing debate about the value of animal research in psychiatry with valid lines of reasoning stating the limits of individual animal models compared to human psychiatric illnesses. Human depression is not a homogenous disorder; therefore, one cannot expect a single animal model to reflect depression heterogeneity. This limited review presents arguments that the Wistar Kyoto (WKY) rats show intrinsic depression traits. The phenotypes of WKY do not completely mirror those of human depression but clearly indicate characteristics that are common with it. WKYs present despair- like behavior, passive coping with stress, comorbid anxiety, and enhanced drug use compared to other routinely used inbred or outbred strains of rats. The commonly used tests identifying these phenotypes reflect exploratory, escape-oriented, and withdrawal-like behaviors. The WKYs consistently choose withdrawal or avoidance in novel environments and freezing behaviors in response to a challenge in these tests. The physiological response to a stressful environment is exaggerated in WKYs. Selective breeding generated two WKY substrains that are nearly isogenic but show clear behavioral differences, including that of depression-like behavior. WKY and its substrains may share characteristics of subgroups of depressed individuals with social withdrawal, low energy, weight loss, sleep disturbances, and specific cognitive dysfunction. The genomes of the WKY and WKY substrains contain variations that impact the function of many genes identified in recent human genetic studies of depression. Thus, these strains of rats share characteristics of human depression at both phenotypic and genetic levels, making them a model of depression traits.
Collapse
Affiliation(s)
- Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mallory E. Udell
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Leah C. Solberg Woods
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
3
|
Pathophysiology and Management Possibilities of Thyroid-Associated Depression. ACTA MEDICA BULGARICA 2022. [DOI: 10.2478/amb-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
Thyroid hormones and the hypothalamic-pituitary-thyroid (HPA) axis are responsible for multiple metabolic processes and psychological well-being. Hypothyroidism can induce mood changes, depressive symptoms and even major depressive disorder. This review is focused on the pathophysiology and mechanisms through which the low level of thyroid hormones may affect the brain function, causing the characteristic symptoms of depression. Key pathways of hypothyroid-associated depressive states include: morphological changes in some brain areas (mainly in the hippocampus – a reduction in its volume); a significant reduction of the cerebral blood flow (incl. hippocampus), and lowered levels of neurotrophic factors (e. g. BDNF – brain-derived neurotrophic factor), which are regulated by the thyroid hormones. An adequate and timely thyroid hormone replacement and treatment with conventional antidepressants often can reverse the psychological symptoms.
Collapse
|
4
|
Shepherd R, Kim B, Saffery R, Novakovic B. Triiodothyronine (T3) Induces Limited Transcriptional and DNA Methylation Reprogramming in Human Monocytes. Biomedicines 2022; 10:biomedicines10030608. [PMID: 35327410 PMCID: PMC8945024 DOI: 10.3390/biomedicines10030608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormones have immunomodulatory roles, but their effects on the transcriptome and epigenome of innate immune cell types remain unexplored. In this study, we investigate the effects of triiodothyronine (T3) on the transcriptome and methylome of human monocytes in vitro, both in resting and lipopolysaccharide (LPS)-stimulated conditions. In resting monocytes, 5 µM T3 affected the expression of a small number of monocyte-to-macrophage differentiation-associated genes, including TLR4 (p-value < 0.05, expression fold change >1.5). T3 attenuated a small proportion of monocyte-to-macrophage differentiation-associated DNA methylation changes, while specifically inducing DNA methylation changes at several hundred differentially methylated CpG probes (DMPs) (p-value < 0.05, Δβ > 0.05). In LPS-stimulated monocytes, the presence of T3 attenuated the effect of 27% of LPS-induced DMPs (p-value < 0.05, Δβ > 0.05). Interestingly, co-stimulation with T3 + LPS induced a unique DNA methylation signature that was not observed in the LPS-only or T3-only exposure groups. Our results suggest that T3 induces limited transcriptional and DNA methylation remodeling in genes enriched in metabolism and immune processes and alters the normal in vitro LPS response. The overlap between differentially expressed genes and genes associated with DMPs was minimal; thus, other epigenetic mechanisms may underpin the expression changes. This research provides insight into the complex interplay between thyroid hormones, epigenetic remodeling, and transcriptional dynamics in monocytes.
Collapse
Affiliation(s)
- Rebecca Shepherd
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (R.S.); (B.K.); (R.S.)
| | - Bowon Kim
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (R.S.); (B.K.); (R.S.)
| | - Richard Saffery
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (R.S.); (B.K.); (R.S.)
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Boris Novakovic
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (R.S.); (B.K.); (R.S.)
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence:
| |
Collapse
|
5
|
Espina JEC, Bagamasbad PD. Synergistic gene regulation by thyroid hormone and glucocorticoid in the hippocampus. VITAMINS AND HORMONES 2021; 118:35-81. [PMID: 35180933 DOI: 10.1016/bs.vh.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The hippocampus is considered the center for learning and memory in the brain, and its development and function is greatly affected by the thyroid and stress axes. Thyroid hormone (TH) and glucocorticoids (GC) are known to have a synergistic effect on developmental programs across several vertebrate species, and their effects on hippocampal structure and function are well-documented. However, there are few studies that focus on the processes and genes that are cooperatively regulated by the two hormone axes. Cross-regulation of the thyroid and stress axes in the hippocampus occurs on multiple levels such that TH can regulate the expression of the GC receptor (GR) while GC can modulate tissue sensitivity to TH by controlling the expression of TH receptor (TR) and enzymes involved in TH biosynthesis. Thyroid hormone and GC are also known to synergistically regulate the transcription of genes associated with neuronal function and development. Synergistic gene regulation by TH and GC may occur through the direct, cooperative action of TR and GR on common target genes, or by indirect mechanisms involving gene regulatory cascades activated by TR and GR. In this chapter, we describe the known physiological effects and underlying molecular mechanisms of TH and GC synergistic gene regulation in the hippocampus.
Collapse
Affiliation(s)
- Jose Ezekiel C Espina
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Pia D Bagamasbad
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines.
| |
Collapse
|
6
|
Transcriptome and Methylome Analysis Reveal Complex Cross-Talks between Thyroid Hormone and Glucocorticoid Signaling at Xenopus Metamorphosis. Cells 2021; 10:cells10092375. [PMID: 34572025 PMCID: PMC8468809 DOI: 10.3390/cells10092375] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Most work in endocrinology focus on the action of a single hormone, and very little on the cross-talks between two hormones. Here we characterize the nature of interactions between thyroid hormone and glucocorticoid signaling during Xenopus tropicalis metamorphosis. Methods: We used functional genomics to derive genome wide profiles of methylated DNA and measured changes of gene expression after hormonal treatments of a highly responsive tissue, tailfin. Clustering classified the data into four types of biological responses, and biological networks were modeled by system biology. Results: We found that gene expression is mostly regulated by either T3 or CORT, or their additive effect when they both regulate the same genes. A small but non-negligible fraction of genes (12%) displayed non-trivial regulations indicative of complex interactions between the signaling pathways. Strikingly, DNA methylation changes display the opposite and are dominated by cross-talks. Conclusion: Cross-talks between thyroid hormones and glucocorticoids are more complex than initially envisioned and are not limited to the simple addition of their individual effects, a statement that can be summarized with the pseudo-equation: TH ∙ GC > TH + GC. DNA methylation changes are highly dynamic and buffered from genome expression.
Collapse
|
7
|
Denver RJ. Stress hormones mediate developmental plasticity in vertebrates with complex life cycles. Neurobiol Stress 2021; 14:100301. [PMID: 33614863 PMCID: PMC7879041 DOI: 10.1016/j.ynstr.2021.100301] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
The environment experienced by developing organisms can shape the timing and character of developmental processes, generating different phenotypes from the same genotype, each with different probabilities of survival and performance as adults. Chordates have two basic modes of development, indirect and direct. Species with indirect development, which includes most fishes and amphibians, have a complex life cycle with a free-swimming larva that is typically a growth stage, followed by a metamorphosis into the adult form. Species with direct development, which is an evolutionarily derived developmental mode, develop directly from embryo to the juvenile without an intervening larval stage. Among the best studied species with complex life cycles are the amphibians, especially the anurans (frogs and toads). Amphibian tadpoles are exposed to diverse biotic and abiotic factors in their developmental habitat. They have extensive capacity for developmental plasticity, which can lead to the expression of different, adaptive morphologies as tadpoles (polyphenism), variation in the timing of and size at metamorphosis, and carry-over effects on the phenotype of the juvenile/adult. The neuroendocrine stress axis plays a pivotal role in mediating environmental effects on amphibian development. Before initiating metamorphosis, if tadpoles are exposed to predators they upregulate production of the stress hormone corticosterone (CORT), which acts directly on the tail to cause it to grow, thereby increasing escape performance. When tadpoles reach a minimum body size to initiate metamorphosis they can vary the timing of transformation in relation to growth opportunity or mortality risk in the larval habitat. They do this by modulating the production of thyroid hormone (TH), the primary inducer of metamorphosis, and CORT, which synergizes with TH to promote tissue transformation. Hypophysiotropic neurons that release the stress neurohormone corticotropin-releasing factor (CRF) are activated in response to environmental stress (e.g., pond drying, food restriction, etc.), and CRF accelerates metamorphosis by directly inducing secretion of pituitary thyrotropin and corticotropin, thereby increasing secretion of TH and CORT. Although activation of the neuroendocrine stress axis promotes immediate survival in a deteriorating larval habitat, costs may be incurred such as reduced tadpole growth and size at metamorphosis. Small size at transformation can impair performance of the adult, reducing probability of survival in the terrestrial habitat, or fecundity. Furthermore, elevations in CORT in the tadpole caused by environmental stressors cause long term, stable changes in neuroendocrine function, behavior and physiology of the adult, which can affect fitness. Comparative studies show that the roles of stress hormones in developmental plasticity are conserved across vertebrate taxa including humans.
Collapse
Affiliation(s)
- Robert J. Denver
- Department of Molecular, Cellular and Developmental Biology, and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA
| |
Collapse
|
8
|
Shewade LH, Schoephoerster JA, Patmann MD, Kulkarni SS, Buchholz DR. Corticosterone Is Essential for Survival Through Frog Metamorphosis. Endocrinology 2020; 161:5938994. [PMID: 33099610 DOI: 10.1210/endocr/bqaa193] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Thyroid hormone (TH) is required for frog metamorphosis, and corticosterone (CORT) increases TH signaling to accelerate metamorphic progression. However, a requirement for CORT in metamorphosis has been difficult to assess prior to the recent development of gene-editing technologies. We addressed this long-standing question using transcription activator-like effector nuclease (TALEN) gene disruption to knock out proopiomelanocortin (pomc) and disrupt CORT production in Xenopus tropicalis. As expected, mutant tadpoles had a reduced peak of plasma CORT at metamorphosis with correspondingly reduced expression of the CORT-response gene Usher syndrome type-1G (ush1g). Mutants had reduced rates of growth and development and exhibited lower expression levels of 2 TH response genes, Krüppel-like factor 9 (klf9) and TH receptor β (thrb). In response to exogenous TH, mutants had reduced TH response gene induction and slower morphological change. Importantly, death invariably occurred during tail resorption, unless rescued by exogenous CORT and, remarkably, by exogenous TH. The ability of exogenous TH by itself to overcome death in pomc mutants indicates that the CORT-dependent increase in TH signaling may ensure functional organ transformation required for survival through metamorphosis and/or may shorten the nonfeeding metamorphic transition to avoid lethal inanition.
Collapse
Affiliation(s)
- Leena H Shewade
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | | | - Matthew D Patmann
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Saurabh S Kulkarni
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
9
|
Ávila-Mendoza J, Subramani A, Denver RJ. Krüppel-Like Factors 9 and 13 Block Axon Growth by Transcriptional Repression of Key Components of the cAMP Signaling Pathway. Front Mol Neurosci 2020; 13:602638. [PMID: 33281552 PMCID: PMC7689098 DOI: 10.3389/fnmol.2020.602638] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/21/2020] [Indexed: 01/11/2023] Open
Abstract
Krüppel-like factors (KLFs) are zinc finger transcription factors implicated in diverse biological processes, including differentiation of neural cells. The ability of mammalian neurons to elongate axons decreases during postnatal development in parallel with a decrease in cAMP, and increase in expression of several Klf genes. The paralogous KLFs 9 and 13 inhibit neurite outgrowth, and we hypothesized that their actions are mediated through repression of cAMP signaling. To test this we used the adult mouse hippocampus-derived cell line HT22 engineered to control expression of Klf9 or Klf13 with doxycycline, or made deficient for these Klfs by CRISPR/Cas9 genome editing. We also used primary hippocampal cells isolated from wild type, Klf9–/– and Klf13–/– mice. Forced expression of Klf9 or Klf13 in HT22 changed the mRNA levels of several genes involved with cAMP signaling; the predominant action was gene repression, and KLF13 influenced ∼4 times more genes than KLF9. KLF9 and KLF13 repressed promoter activity of the protein kinase a catalytic subunit alpha gene in transfection-reporter assays; KLF13, but not KLF9 repressed the calmodulin 3 promoter. Forskolin activation of a cAMP-dependent promoter was reduced after forced expression of Klf9 or Klf13, but was enhanced in Klf gene knockout cells. Forced expression of Klf9 or Klf13 blocked cAMP-dependent neurite outgrowth in HT22 cells, and axon growth in primary hippocampal neurons, while Klf gene knockout enhanced the effect of elevated cAMP. Taken together, our findings show that KLF9 and KLF13 inhibit neurite/axon growth in hippocampal neurons, in part, by inhibiting the cAMP signaling pathway.
Collapse
Affiliation(s)
- José Ávila-Mendoza
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Arasakumar Subramani
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Robert J Denver
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Wackerlig J, Köfeler HC, Korz V, Hussein AM, Feyissa DD, Höger H, Urban E, Langer T, Lubec G, Lubec J. Differences in Hypothalamic Lipid Profiles of Young and Aged Male Rats With Impaired and Unimpaired Spatial Cognitive Abilities and Memory. Front Aging Neurosci 2020; 12:204. [PMID: 32719597 PMCID: PMC7349000 DOI: 10.3389/fnagi.2020.00204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
Lipids play a major role for several brain functions, including cognition and memory. There is a series of work on individual lipids showing involvement in memory mechanisms, a concise lipidome was not reported so far. Moreover, there is no evidence for age-related memory decline and there is only work on brain of young vs. aging animals. Aging animals, however, are not a homogeneous group with respect to memory impairments, thus animals with impaired and unimpaired memory can be discriminated. Following recent studies of hippocampal lipid profiles and hypothalamus controlled hormone profiles, the aim of this study was to compare hypothalamic, lipidomic changes in male Sprague-Dawley rats between young (YM), old impaired (OMI) and old unimpaired (OMU) males. Grouping criterions for aged rats were evaluated by testing them in a spatial memory task, the hole-board. YMs were also tested. Subsequently brains were removed, dissected and hypothalami were kept at −80°C until sample preparation and analysis on liquid chromatography / mass spectrometry (LC-MS). Significant differences in the amounts of a series of lipids from several classes could be detected between young and aged and between OMI and OMU. A large number of lipids were increased in OMI and a smaller number in OMU as compared to young rats. Differences of lipid ratios (log2 of ratio) between OMI and OMU consisted of glycerophosphocholines (aPC 36:2 and 36:3; PC 34:0, 36:1, 36:3 and 40:2); Glycerophosphoethanolamines (aPE 34:2, 38:5 and 40:5; LPE 18:1, 20:1, 20:4, 22:4 and 22:6; PE36:1 and 38:4); glycerophosphoserines (PS 36:1, 40:4, and 40:6); triacylglycerol TG 52:4; ceramide Cer 17:2 and sphingomyelin SM 20:0. Thus, hypothalamic lipid profiles across different lipid classes discriminate aged male animals into OMU and OMI. The underlying mechanisms may be related to different functional networks of lipids in memory mechanisms and differences in metabolic processes. The study underlines the importance of lipidomics in the pathophysiology of age-related cognitive decline. The necessity of evaluating the cognitive status of aged subjects by behavioral tests results in more specific detection of critical lipids in memory decline, on which now can be focused in subsequent memory studies in animals and humans.
Collapse
Affiliation(s)
- Judith Wackerlig
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Harald C Köfeler
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Volker Korz
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Ahmed M Hussein
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Daniel D Feyissa
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Vienna, Austria
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Gert Lubec
- Neuroscience Laboratory, Paracelsus Medical University, Salzburg, Austria
| | - Jana Lubec
- Neuroscience Laboratory, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
11
|
Mojica CAR, Ybañez WS, Olarte KCV, Poblete ABC, Bagamasbad PD. Differential Glucocorticoid-Dependent Regulation and Function of the ERRFI1 Gene in Triple-Negative Breast Cancer. Endocrinology 2020; 161:5841101. [PMID: 32432675 PMCID: PMC7316368 DOI: 10.1210/endocr/bqaa082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Glucocorticoids (GCs; eg, hydrocortisone [CORT]) are routinely used as chemotherapeutic, anti-emetic, and palliative agents in breast cancer (BCa) therapy. The effects of GC signaling on BCa progression, however, remain a contentious topic as GC treatment seems to be beneficial for receptor-positive subtypes but elicits unfavorable responses in triple-negative BCa (TNBC). The mechanistic basis for these conflicting effects of GC in BCa is poorly understood. In this study, we sought to decipher the molecular mechanisms that govern the GC-dependent induction of the tumor suppressor ERRFI1 gene, an inhibitor of epidermal growth factor receptor (EGFR) signaling, and characterize the role of the GC-ERRFI1 regulatory axis in TNBC. Treatment of TNBC cell lines with a protein synthesis inhibitor or GC receptor (GR) antagonist followed by gene expression analysis suggests that ERRFI1 is a direct GR target. Using in silico analysis coupled with enhancer-reporter assays, we identified a putative ERRFI1 enhancer that supports CORT-dependent transactivation. In orthogonal assays for cell proliferation, survival, migration, and apoptosis, CORT mostly facilitated an oncogenic phenotype regardless of malignancy status. Lentiviral knockdown and overexpression of ERRFI1 showed that the CORT-enhanced oncogenic phenotype is restricted by ERRFI1 in the normal breast epithelial model MCF10A and to a lesser degree in the metastatic TNBC line MDA-MB-468. Conversely, ERRFI1 conferred pro-tumorigenic effects in the highly metastatic TNBC model MDA-MB-231. Taken together, our findings suggest that the progressive loss of the GC-dependent regulation and anti-tumorigenic function of ERRFI1 influences BCa progression and may contribute to the unfavorable effects of GC therapy in TNBC.
Collapse
Affiliation(s)
- Chromewell Agustin R Mojica
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Weand S Ybañez
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Kevin Christian V Olarte
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Alyssa Beatrice C Poblete
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Pia D Bagamasbad
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
- Correspondence: Pia D. Bagamasbad, PhD, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines, Diliman, Quezon City, Metro Manila 1101, Philippines. E-mail:
| |
Collapse
|
12
|
Knoedler JR, Ávila-Mendoza J, Subramani A, Denver RJ. The Paralogous Krüppel-like Factors 9 and 13 Regulate the Mammalian Cellular Circadian Clock Output Gene Dbp. J Biol Rhythms 2020; 35:257-274. [PMID: 32241200 DOI: 10.1177/0748730420913205] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An intricate transcription-translation feedback loop (TTFL) governs cellular circadian rhythms in mammals. Here, we report that the zinc finger transcription factor Krüppel-like factor 9 (KLF9) is regulated by this TTFL, it associates in chromatin at the core circadian clock and clock-output genes, and it acts to modulate transcription of the clock-output gene Dbp. Our earlier genome-wide analysis of the mouse hippocampus-derived cell line HT22 showed that KLF9 associates in chromatin with Per1, Per3, Dbp, Tef, Bhlhe40, Bhlhe41, Nr1d1, and Nr1d2. Of the 3514 KLF9 peaks identified in HT22 cells, 1028 contain E-box sequences to which the transcriptional activators CLOCK and BMAL1 may bind, a frequency significantly greater than expected by chance. Klf9 mRNA showed circadian oscillation in synchronized HT22 cells, mouse hippocampus, and liver. At the clock-output gene Dbp, KLF9 exhibited circadian rhythmicity in its association in chromatin in HT22 cells and hippocampus. Forced expression of KLF9 in HT22 cells repressed basal Dbp transcription and strongly inhibited CLOCK+BMAL1-dependent transcriptional activation of a transfected Dbp reporter. Mutational analysis showed that this action of KLF9 depended on 2 intact KLF9-binding motifs within the Dbp locus that are in close proximity to E-boxes. Knockout of Klf9 or the paralogous gene Klf13 using CRISPR/Cas9 genome editing in HT22 cells had no effect on Dbp expression, but combined knockout of both genes strongly impaired circadian Dbp mRNA oscillation. Like KLF9, KLF13 also showed association in chromatin with clock- and clock-output genes, and forced expression of KLF13 inhibited the actions of CLOCK+BMAL1 on Dbp transcription. Our results suggest novel and partly overlapping roles for KLF9 and KLF13 in modulating cellular circadian clock output by a mechanism involving direct interaction with the core TTFL.
Collapse
Affiliation(s)
- Joseph R Knoedler
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, Michigan
| | - José Ávila-Mendoza
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan
| | - Arasakumar Subramani
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan
| | - Robert J Denver
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, Michigan.,Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan
| |
Collapse
|