1
|
Nyandoro VO, Ismail EA, Tageldin A, Gafar MA, Peters XQ, Mautsoe R, Omolo CA, Govender T. Potential of nanocarrier-mediated delivery of vancomycin for MRSA infections. Expert Opin Drug Deliv 2025:1-19. [PMID: 39949087 DOI: 10.1080/17425247.2025.2459756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) threatens global health due to its resistance to vancomycin, which is the standard treatment despite limitations, including nephrotoxicity and low intracellular permeability. This necessitates the development of innovative strategies such as nanocarrier-mediated delivery to overcome such limitations. Nanocarriers serve as delivery systems for vancomycin and exhibit inherent antibacterial properties, potentially providing synergism and overcoming MRSA's resistance. Nanocarriers provide sustained release and targeted delivery of vancomycin to the infection site, achieving higher therapeutic concentrations and superior antibacterial activity with reduced doses, which minimizes systemic toxicity. Moreover, leveraging simulations techniques provides more insights on vancomycin-nanocarrier interactions, facilitating the optimization of nanosystems. AREAS COVERED The article discusses the potential of nanocarriers in delivering vancomycin to infection site, reducing systemic toxicity, and potentiating anti-MRSA activity. Additionally, it reviews modeling and simulation studies to provide a deeper understanding of vancomycin-nanocarrier interactions. The literature search included experimental articles from 2017 to 2024, searched in Web of Science, Google scholar, PubMed, and Scopus. EXPERT OPINION Nanocarrier-mediated delivery of vancomycin offers promising approaches to combat MRSA infections by enhancing therapeutic efficacy and reducing systemic toxicity. However, further research is required to optimize these nanoformulations and advance them to clinical trials and practical applications.
Collapse
Affiliation(s)
- Vincent O Nyandoro
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmaceutics and Pharmaceutical Chemistry, School of Pharmacy, Kabarak University, Kabarak, Kenya
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
| | - Abdelrahman Tageldin
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Xylia Q Peters
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Relebohile Mautsoe
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- School of Pharmacy and Health Sciences, Department of Pharmaceutics, United States International University-Africa, Nairobi, Kenya
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
2
|
Abdelall LM, Nagy YI, Kashef MT. Restoring vancomycin activity against resistant Enterococcus faecalis using a transcription factor decoy as a vanA operon-inhibitor. J Antimicrob Chemother 2024; 79:2999-3006. [PMID: 39255254 DOI: 10.1093/jac/dkae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Vancomycin-resistant enterococci (VRE) represent a public health threat due to the few available treatments. Such alarm has triggered worldwide initiatives to develop effective antimicrobial compounds and novel delivery and therapeutic strategies. vanA operon is responsible for most cases of acquired vancomycin resistance in enterococci. OBJECTIVES Development of a transcription factor decoy (TFD) system as a vanA gene transcription-inhibitor. METHODS Vancomycin MIC was determined in the presence of TFD-lipoplexes. Additionally, the effect of TFD-lipoplexes on the expression level of the vanA gene and the growth pattern of E. faecalis was evaluated. The haemolytic activity of the developed TFD-lipoplexes and their cytotoxicity were examined. TFD-lipoplexes efficiency in treating vancomycin-resistant E. faecalis (VREF) infection was tested in vivo using a systemic mice infection model. RESULTS A reduction in vancomycin MIC against VRE from 256 mg/L (resistant) to 16 mg/L (intermediate susceptible), in the presence of TFD-lipoplexes, was recorded. The developed TFD-lipoplexes lacked any effect on E. faecalis growth and significantly reduced the transcription level of the vanA gene by about 3-fold. In an initial evaluation of the safety of TFD-lipoplexes, they were found not to be overtly haemolytic to human blood or cytotoxic to human skin fibroblast cells. The co-administration of TFD-lipoplexes and vancomycin efficiently eradicated VREF infection in vivo. CONCLUSIONS The developed TFD-lipoplexes successfully restored vancomycin activity against VREF. They offer a safe effective unconventional therapy against this stubborn organism and present a revolution in gene therapy that can be applied to other resistance-encoding genes in various organisms.
Collapse
Affiliation(s)
- Loai M Abdelall
- Department of General Administration of Factories Inspection, Central Administration of Operations, Egyptian Drug Authority, Giza 12654, Egypt
| | - Yosra Ibrahim Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
3
|
Badr EA, Nagy YI, Sayed RM, Kashef MT. Development of a transcription factor decoy-nanocarrier system as a successful inhibitor of Enterococcus faecalis virulence in vitro and in vivo. Microb Pathog 2024; 193:106762. [PMID: 38936638 DOI: 10.1016/j.micpath.2024.106762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Enterococcus faecalis is a troublesome nosocomial pathogen that acquired resistance to most available antimicrobial agents. Antivirulence agents represent an unconventional treatment approach. Here, transcription factor decoy (TFD)-loaded cationic liposomes (TLL) were developed as an inhibitor of the Fsr quorum-sensing system and its associated virulence traits, in E. faecalis. The consensus sequence of the FsrA binding site was found conserved among 651 E. faecalis annotated genomes. The TFD was synthesized as an 82 bp DNA duplex, containing the conserved binding sequence, and loaded onto cationic liposomes. The optimum loading capacity, mean particle size, and zeta potential of the TLL were characterized. The developed TLL lacked any effect on E. faecalis growth and significantly inhibited the in vitro production of the proteolytic enzymes controlled by the Fsr system; gelatinase and serine protease, in a concentration-dependent manner. This inhibition was accompanied by a significant reduction in the transcription levels of FsrA-regulated genes (fsrB, gelE, and sprE). The developed TLL were safe as evidenced by the nonhemolytic effect on human RBCs and the negligible cytotoxicity on human skin fibroblast cells. Moreover, in the larvae infection model, TLL displayed a significant abolish in the mortality rates of Galleria mellonella larvae infected with E. faecalis. In conclusion, the developed TLL offer a new safe strategy for combating E. faecalis infection through the inhibition of quorum-sensing-mediated virulence; providing a platform for the development of similar agents to combat many other pathogens.
Collapse
Affiliation(s)
- Eslam A Badr
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Yosra Ibrahim Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Rehab Mahmoud Sayed
- Natural Products Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
4
|
Moreira L, Guimarães NM, Santos RS, Loureiro JA, Pereira MC, Azevedo NF. Promising strategies employing nucleic acids as antimicrobial drugs. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102122. [PMID: 38333674 PMCID: PMC10850860 DOI: 10.1016/j.omtn.2024.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Antimicrobial resistance (AMR) is a growing concern because it causes microorganisms to develop resistance to drugs commonly used to treat infections. This results in increased difficulty in treating infections, leading to higher mortality rates and significant economic effects. Investing in new antimicrobial agents is, therefore, necessary to prevent and control AMR. Antimicrobial nucleic acids have arisen as potential key players in novel therapies for AMR infections. They have been designed to serve as antimicrobials and to act as adjuvants to conventional antibiotics or to inhibit virulent mechanisms. This new category of antimicrobial drugs consists of antisense oligonucleotides and oligomers, DNAzymes, and transcription factor decoys, differing in terms of structure, target molecules, and mechanisms of action. They are synthesized using nucleic acid analogs to enhance their resistance to nucleases. Because bacterial envelopes are generally impermeable to oligonucleotides, delivery into the cytoplasm typically requires the assistance of nanocarriers, which can affect their therapeutic potency. Given that numerous factors contribute to the success of these antimicrobial drugs, this review aims to provide a summary of the key advancements in the use of oligonucleotides for treating bacterial infections. Their mechanisms of action and the impact of factors such as nucleic acid design, target sequence, and nanocarriers on the antimicrobial potency are discussed.
Collapse
Affiliation(s)
- Luís Moreira
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno M. Guimarães
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rita S. Santos
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A. Loureiro
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria C. Pereira
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno F. Azevedo
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
5
|
Al-Tohamy A, Grove A. Targeting bacterial transcription factors for infection control: opportunities and challenges. Transcription 2023:1-28. [PMID: 38126125 DOI: 10.1080/21541264.2023.2293523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The rising threat of antibiotic resistance in pathogenic bacteria emphasizes the need for new therapeutic strategies. This review focuses on bacterial transcription factors (TFs), which play crucial roles in bacterial pathogenesis. We discuss the regulatory roles of these factors through examples, and we outline potential therapeutic strategies targeting bacterial TFs. Specifically, we discuss the use of small molecules to interfere with TF function and the development of transcription factor decoys, oligonucleotides that compete with promoters for TF binding. We also cover peptides that target the interaction between the bacterial TF and other factors, such as RNA polymerase, and the targeting of sigma factors. These strategies, while promising, come with challenges, from identifying targets to designing interventions, managing side effects, and accounting for changing bacterial resistance patterns. We also delve into how Artificial Intelligence contributes to these efforts and how it may be exploited in the future, and we touch on the roles of multidisciplinary collaboration and policy to advance this research domain.Abbreviations: AI, artificial intelligence; CNN, convolutional neural networks; DTI: drug-target interaction; HTH, helix-turn-helix; IHF, integration host factor; LTTRs, LysR-type transcriptional regulators; MarR, multiple antibiotic resistance regulator; MRSA, methicillin resistant Staphylococcus aureus; MSA: multiple sequence alignment; NAP, nucleoid-associated protein; PROTACs, proteolysis targeting chimeras; RNAP, RNA polymerase; TF, transcription factor; TFD, transcription factor decoying; TFTRs, TetR-family transcriptional regulators; wHTH, winged helix-turn-helix.
Collapse
Affiliation(s)
- Ahmed Al-Tohamy
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Department of Cell Biology, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
6
|
Application of Nanomaterials in the Prevention, Detection, and Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA). Pharmaceutics 2022; 14:pharmaceutics14040805. [PMID: 35456638 PMCID: PMC9030647 DOI: 10.3390/pharmaceutics14040805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 01/27/2023] Open
Abstract
Due to differences in geographic surveillance systems, chemical sanitization practices, and antibiotic stewardship (AS) implementation employed during the COVID-19 pandemic, many experts have expressed concerns regarding a future surge in global antimicrobial resistance (AMR). A potential beneficiary of these differences is the Gram-positive bacteria MRSA. MRSA is a bacterial pathogen with a high potential for mutational resistance, allowing it to engage various AMR mechanisms circumventing conventional antibiotic therapies and the host’s immune response. Coupled with a lack of novel FDA-approved antibiotics reaching the clinic, the onus is on researchers to develop alternative treatment tools to mitigate against an increase in pathogenic resistance. Mitigation strategies can take the form of synthetic or biomimetic nanomaterials/vesicles employed in vaccines, rapid diagnostics, antibiotic delivery, and nanotherapeutics. This review seeks to discuss the current potential of the aforementioned nanomaterials in detecting and treating MRSA.
Collapse
|
7
|
Hartwig O, Loretz B, Nougarede A, Jary D, Sulpice E, Gidrol X, Navarro F, Lehr CM. Leaky gut model of the human intestinal mucosa for testing siRNA-based nanomedicine targeting JAK1. J Control Release 2022; 345:646-660. [PMID: 35339579 PMCID: PMC9168449 DOI: 10.1016/j.jconrel.2022.03.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 02/07/2023]
Abstract
Complex in vitro models of human immune cells and intestinal mucosa may have a translation-assisting role in the assessment of anti-inflammatory compounds. Chronic inflammation of the gastrointestinal tract is a hallmark of inflammatory bowel diseases (IBD). In both IBD entities, Crohn's disease and ulcerative colitis, impaired immune cell activation and dysfunctional epithelial barrier are the common pathophysiology. Current therapeutic approaches are targeting single immune modulator molecules to stop disease progression and reduce adverse effects. Such molecular targets can be difficult to assess in experimental animal models of colitis, due to the disease complexity and species differences. Previously, a co-culture model based on human epithelial cells and monocytes arranged in a physiological microenvironment was used to mimic inflamed mucosa for toxicological and permeability studies. The leaky gut model described here, a co-culture of Caco-2, THP-1 and MUTZ-3 cells, was used to mimic IBD-related pathophysiology and for combined investigations of permeability and target engagement of two Janus kinase (JAK) inhibitors, tofacitinib (TOFA) and a JAK1-targeting siRNA nanomedicine. The co-culture just before reaching confluency of the epithelium was used to mimic the compromised intestinal barrier. Delivery efficacy and target engagement against JAK1 was quantified via downstream analysis of STAT1 protein phosphorylation after IFN-γ stimulation. Compared to a tight barrier, the leaky gut model showed 92 ± 5% confluence, a barrier function below 200 Ω*cm2, and enhanced immune response to bacteria-derived lipopolysaccharides. By confocal microscopy we observed an increased accumulation of siJAK1-nanoparticles within the sub-confluent regions leading to uptake into immune cells near the epithelium. A concentration-dependent downregulation of JAK/STAT pathway was observed for siJAK1-nanoparticles (10 ± 12% to 16 ± 12%), whereas TOFA inhibition was 86 ± 2%, compared to untreated cells. By mimicking the status of severely damaged epithelium, like in IBD, the leaky gut model holds promise as a human in vitro system to evaluate the efficacy of anti-inflammatory drugs and nanomedicines.
Collapse
Affiliation(s)
- Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.
| | - Adrien Nougarede
- University Grenoble Alpes, F-38000 Grenoble, France; CEA LETI, Minatec Campus, F-38054 Grenoble, France
| | - Dorothée Jary
- University Grenoble Alpes, F-38000 Grenoble, France; CEA LETI, Minatec Campus, F-38054 Grenoble, France
| | - Eric Sulpice
- University Grenoble Alpes, CEA, INSERM, IRIG, Biomics, F-38000 Grenoble, France
| | - Xavier Gidrol
- University Grenoble Alpes, CEA, INSERM, IRIG, Biomics, F-38000 Grenoble, France
| | - Fabrice Navarro
- University Grenoble Alpes, F-38000 Grenoble, France; CEA LETI, Minatec Campus, F-38054 Grenoble, France
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
8
|
Rehman SU, Niazi RK, Zulqurnain M, Mansoor Q, Iqbal J, Arshad A. Graphene nanoplatelets/CeO2 nanotiles nanocomposites as effective antibacterial material for multiple drug-resistant bacteria. APPLIED NANOSCIENCE 2022; 12:1779-1790. [PMID: 35308867 PMCID: PMC8918601 DOI: 10.1007/s13204-022-02422-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/12/2022] [Indexed: 01/27/2023]
Abstract
Antibacterial agents with low toxicity to normal cells, redox activity and free radical scavenging property are urgently needed to address the global health crisis. The phenomenal conducting nature of graphene is a best fit to enhance the antibacterial properties of metal oxides. In this work, CeO2 nanotiles and graphene nanoplatelets/CeO2 nanotiles nanocomposites (G/CeO2) have been synthesized by a solvothermal method. The prepared materials have been characterized using XRD, FE-SEM, EDX, and UV–visible spectroscopy techniques to investigate their crystallinity, morphology, composition, and optical bandgap energies. The CeO2 and G/CeO2 nanocomposites have also been tested for antibacterial applications. The neat CeO2 nanotiles sample inhibits the bacterial growth of Pseudomonas aeruginosa and Staphylococcus aureus up to 14.21% and 39.53% respectively. The antibacterial activity was tremendously enhanced using 25% graphene-loaded sample (G/CeO2-II) i.e., approximately 83% loss of P. aeruginosa and 89% in case of S. aureus has been observed. This can be attributed to the unique nano-architecture, oxidative stress due to the excellent ability of reversible conversion between the two electronic states of CeO2 and the stress exerted by the planar graphene and CeO2 nanotiles. Therefore, the G/CeO2 nanocomposites can find potential application as nano-antibiotics for controlling pathogens.
Collapse
Affiliation(s)
- Saliha ur Rehman
- Department of Physics, International Islamic University, Islamabad, Pakistan
| | - Robina Khan Niazi
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - M. Zulqurnain
- Department of Physics, The University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA UK
| | - Qaisar Mansoor
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Javed Iqbal
- Laboratory of Nanoscience and Technology (LNT), Department of Physics, Quaid I Azam University, Islamabad, Pakistan
| | - Aqsa Arshad
- Department of Physics, International Islamic University, Islamabad, Pakistan
- Electrical Engineering Division, University of Cambridge, Cambridge, CB3 0FA UK
| |
Collapse
|
9
|
Dey AK, Nougarède A, Clément F, Fournier C, Jouvin-Marche E, Escudé M, Jary D, Navarro FP, Marche PN. Tuning the Immunostimulation Properties of Cationic Lipid Nanocarriers for Nucleic Acid Delivery. Front Immunol 2021; 12:722411. [PMID: 34497612 PMCID: PMC8419413 DOI: 10.3389/fimmu.2021.722411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
Nonviral systems, such as lipid nanoparticles, have emerged as reliable methods to enable nucleic acid intracellular delivery. The use of cationic lipids in various formulations of lipid nanoparticles enables the formation of complexes with nucleic acid cargo and facilitates their uptake by target cells. However, due to their small size and highly charged nature, these nanocarrier systems can interact in vivo with antigen-presenting cells (APCs), such as dendritic cells (DCs) and macrophages. As this might prove to be a safety concern for developing therapies based on lipid nanocarriers, we sought to understand how they could affect the physiology of APCs. In the present study, we investigate the cellular and metabolic response of primary macrophages or DCs exposed to the neutral or cationic variant of the same lipid nanoparticle formulation. We demonstrate that macrophages are the cells affected most significantly and that the cationic nanocarrier has a substantial impact on their physiology, depending on the positive surface charge. Our study provides a first model explaining the impact of charged lipid materials on immune cells and demonstrates that the primary adverse effects observed can be prevented by fine-tuning the load of nucleic acid cargo. Finally, we bring rationale to calibrate the nucleic acid load of cationic lipid nanocarriers depending on whether immunostimulation is desirable with the intended therapeutic application, for instance, gene delivery or messenger RNA vaccines.
Collapse
Affiliation(s)
- Arindam K. Dey
- Univ. Grenoble Alpes, St Martin d’Hères, France
- Institute for Advanced Biosciences, Research Center INSERM U1209, CNRS UMR5309, La Tronche, France
| | - Adrien Nougarède
- Univ. Grenoble Alpes, St Martin d’Hères, France
- CEA, LETI, Division for Biology and Healthcare Technologies, Microfluidic Systems and Bioengineering Lab, Grenoble, France
| | - Flora Clément
- Univ. Grenoble Alpes, St Martin d’Hères, France
- Institute for Advanced Biosciences, Research Center INSERM U1209, CNRS UMR5309, La Tronche, France
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, Biomics, Grenoble, France
| | - Carole Fournier
- Univ. Grenoble Alpes, St Martin d’Hères, France
- Institute for Advanced Biosciences, Research Center INSERM U1209, CNRS UMR5309, La Tronche, France
| | - Evelyne Jouvin-Marche
- Univ. Grenoble Alpes, St Martin d’Hères, France
- Institute for Advanced Biosciences, Research Center INSERM U1209, CNRS UMR5309, La Tronche, France
| | - Marie Escudé
- Univ. Grenoble Alpes, St Martin d’Hères, France
- CEA, LETI, Division for Biology and Healthcare Technologies, Microfluidic Systems and Bioengineering Lab, Grenoble, France
| | - Dorothée Jary
- Univ. Grenoble Alpes, St Martin d’Hères, France
- CEA, LETI, Division for Biology and Healthcare Technologies, Microfluidic Systems and Bioengineering Lab, Grenoble, France
| | - Fabrice P. Navarro
- Univ. Grenoble Alpes, St Martin d’Hères, France
- CEA, LETI, Division for Biology and Healthcare Technologies, Microfluidic Systems and Bioengineering Lab, Grenoble, France
| | - Patrice N. Marche
- Univ. Grenoble Alpes, St Martin d’Hères, France
- Institute for Advanced Biosciences, Research Center INSERM U1209, CNRS UMR5309, La Tronche, France
| |
Collapse
|
10
|
Gkartziou F, Giormezis N, Spiliopoulou I, Antimisiaris SG. Nanobiosystems for Antimicrobial Drug-Resistant Infections. NANOMATERIALS 2021; 11:nano11051075. [PMID: 33922004 PMCID: PMC8143556 DOI: 10.3390/nano11051075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
The worldwide increased bacterial resistance toward antimicrobial therapeutics has led investigators to search for new therapeutic options. Some of the options currently exploited to treat drug-resistant infections include drug-associated nanosystems. Additionally, the use of bacteriophages alone or in combination with drugs has been recently revisited; some studies utilizing nanosystems for bacteriophage delivery have been already reported. In this review article, we focus on nine pathogens that are the leading antimicrobial drug-resistant organisms, causing difficult-to-treat infections. For each organism, the bacteriophages and nanosystems developed or used in the last 20 years as potential treatments of pathogen-related infections are discussed. Summarizing conclusions and future perspectives related with the potential of such nano-antimicrobials for the treatment of persistent infections are finally highlighted.
Collapse
Affiliation(s)
- Foteini Gkartziou
- Institute of Chemical Engineering, FORTH/ICES, Platani, 26504 Patras, Greece;
| | - Nikolaos Giormezis
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Iris Spiliopoulou
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
- Department of Microbiology, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: (I.S.); (S.G.A.)
| | - Sophia G. Antimisiaris
- Institute of Chemical Engineering, FORTH/ICES, Platani, 26504 Patras, Greece;
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
- Correspondence: (I.S.); (S.G.A.)
| |
Collapse
|
11
|
Vanamala K, Tatiparti K, Bhise K, Sau S, Scheetz MH, Rybak MJ, Andes D, Iyer AK. Novel approaches for the treatment of methicillin-resistant Staphylococcus aureus: Using nanoparticles to overcome multidrug resistance. Drug Discov Today 2021; 26:31-43. [PMID: 33091564 PMCID: PMC7855522 DOI: 10.1016/j.drudis.2020.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/15/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes serious infections in both community and hospital settings, with high mortality rates. Treatment of MRSA infections is challenging because of the rapidly evolving resistance mechanisms combined with the protective biofilms of S. aureus. Together, these characteristic resistance mechanisms continue to render conventional treatment modalities ineffective. The use of nanoformulations with unique modes of transport across bacterial membranes could be a useful strategy for disease-specific delivery. In this review, we summarize treatment approaches for MRSA, including novel techniques in nanoparticulate designing for better therapeutic outcomes; and facilitate an understanding that nanoparticulate delivery systems could be a robust approach in the successful treatment of MRSA.
Collapse
Affiliation(s)
- Kushal Vanamala
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Katyayani Tatiparti
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Ketki Bhise
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Samaresh Sau
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Marc H Scheetz
- Departments of Pharmacy Practice and Pharmacology, Midwestern University Chicago College of Pharmacy and Graduate Studies, Pharmacometric Center of Excellence, Chicago, IL, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA; Division of Infectious Diseases, Department of Medicine, School of Medicine, Wayne State University, Detroit, MI, USA
| | - David Andes
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Arun K Iyer
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
12
|
Hibbitts AJ, Ramsey JM, Barlow J, MacLoughlin R, Cryan SA. In Vitro and In Vivo Assessment of PEGylated PEI for Anti-IL-8/CxCL-1 siRNA Delivery to the Lungs. NANOMATERIALS 2020; 10:nano10071248. [PMID: 32605011 PMCID: PMC7407419 DOI: 10.3390/nano10071248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
Abstract
Inhalation offers a means of rapid, local delivery of siRNA to treat a range of autoimmune or inflammatory respiratory conditions. This work investigated the potential of a linear 10 kDa Poly(ethylene glycol) (PEG)-modified 25 kDa branched polyethyleneimine (PEI) (PEI-LPEG) to effectively deliver siRNA to airway epithelial cells. Following optimization with anti- glyceraldehyde 3-phosphate dehydrogenase (GAPDH) siRNA, PEI and PEI-LPEG anti-IL8 siRNA nanoparticles were assessed for efficacy using polarised Calu-3 human airway epithelial cells and a twin stage impinger (TSI) in vitro lung model. Studies were then advanced to an in vivo lipopolysaccharide (LPS)-stimulated rodent model of inflammation. In parallel, the suitability of the siRNA-loaded nanoparticles for nebulization using a vibrating mesh nebuliser was assessed. The siRNA nanoparticles were nebulised using an Aerogen® Pro vibrating mesh nebuliser and characterised for aerosol output, droplet size and fine particle fraction. Only PEI anti-IL8 siRNA nanoparticles were capable of significant levels of IL-8 knockdown in vitro in non-nebulised samples. However, on nebulization through a TSI, only PEI-PEG siRNA nanoparticles demonstrated significant decreases in gene and protein expression in polarised Calu-3 cells. In vivo, both anti-CXCL-1 (rat IL-8 homologue) nanoparticles demonstrated a decreased CXCL-1 gene expression in lung tissue, but this was non-significant. However, PEI anti-CXCL-1 siRNA-treated rats were found to have significantly less infiltrating macrophages in their bronchoalveolar lavage (BAL) fluid. Overall, the in vivo gene and protein inhibition findings indicated a result more reminiscent of the in vitro bolus delivery rather than the in vitro nebulization data. This work demonstrates the potential of nebulised PEI-PEG siRNA nanoparticles in modulating pulmonary inflammation and highlights the need to move towards more relevant in vitro and in vivo models for respiratory drug development.
Collapse
Affiliation(s)
- Alan J. Hibbitts
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; (A.J.H.); (J.M.R.); (R.M.)
- Trinity Centre for Biomedical Engineering, Trinity College, Dublin D02 R590, Ireland
| | - Joanne M. Ramsey
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; (A.J.H.); (J.M.R.); (R.M.)
| | - James Barlow
- Department of Chemistry, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland;
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; (A.J.H.); (J.M.R.); (R.M.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin D02 PN40, Ireland
- Aerogen Ltd. Galway Business Park, Galway H91 HE94, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; (A.J.H.); (J.M.R.); (R.M.)
- Trinity Centre for Biomedical Engineering, Trinity College, Dublin D02 R590, Ireland
- Correspondence: ; Tel.: +353-14022741
| |
Collapse
|