1
|
Torres-Castro P, Grases-Pintó B, Abril-Gil M, Castell M, Rodríguez-Lagunas MJ, Pérez-Cano FJ, Franch À. Modulation of the Systemic Immune Response in Suckling Rats by Breast Milk TGF-β2, EGF and FGF21 Supplementation. Nutrients 2020; 12:nu12061888. [PMID: 32599899 PMCID: PMC7353385 DOI: 10.3390/nu12061888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/17/2022] Open
Abstract
Breast milk is a rich fluid containing bioactive compounds such as specific growth factors (GF) that contribute to maturation of the immune system in early life. The aim of this study was to determine whether transforming growth factor-β2 (TGF-β2), epidermal growth factor (EGF) and fibroblast growth factor 21 (FGF21), compounds present in breast milk, could promote systemic immune maturation. For this purpose, newborn Wistar rats were daily supplemented with these GF by oral gavage during the suckling period (21 days of life). At day 14 and 21 of life, plasma for immunoglobulin (Ig) quantification was obtained and spleen lymphocytes were isolated, immunophenotyped and cultured to evaluate their ability to proliferate and release cytokines. The main result was obtained at day 14, when supplementation with EGF increased B cell proportion to reach levels observed at day 21. At the end of the suckling period, all GF increased the plasma levels of IgG1 and IgG2a isotypes, FGF21 balanced the Th1/Th2 cytokine response and both EGF and FGF21 modified splenic lymphocyte composition. These results suggested that the studied milk bioactive factors, mainly EGF and FGF21, may have modulatory roles in the systemic immune responses in early life, although their physiological roles remain to be established.
Collapse
Affiliation(s)
- Paulina Torres-Castro
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (P.T.-C.); (B.G.-P.); (M.A.-G.); (M.C.); (M.J.R.-L.); (A.F.)
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain
| | - Blanca Grases-Pintó
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (P.T.-C.); (B.G.-P.); (M.A.-G.); (M.C.); (M.J.R.-L.); (A.F.)
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain
| | - Mar Abril-Gil
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (P.T.-C.); (B.G.-P.); (M.A.-G.); (M.C.); (M.J.R.-L.); (A.F.)
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (P.T.-C.); (B.G.-P.); (M.A.-G.); (M.C.); (M.J.R.-L.); (A.F.)
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain
| | - María J. Rodríguez-Lagunas
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (P.T.-C.); (B.G.-P.); (M.A.-G.); (M.C.); (M.J.R.-L.); (A.F.)
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (P.T.-C.); (B.G.-P.); (M.A.-G.); (M.C.); (M.J.R.-L.); (A.F.)
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain
- Correspondence: ; Tel.: +34-93-402-45-05
| | - Àngels Franch
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (P.T.-C.); (B.G.-P.); (M.A.-G.); (M.C.); (M.J.R.-L.); (A.F.)
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
2
|
Developmental Changes in Phosphate Homeostasis. Rev Physiol Biochem Pharmacol 2020; 179:117-138. [PMID: 33398502 DOI: 10.1007/112_2020_52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphate is a multivalent ion critical for a variety of physiological functions including bone formation, which occurs rapidly in the developing infant. In order to ensure maximal bone mineralization, young animals must maintain a positive phosphate balance. To accomplish this, intestinal absorption and renal phosphate reabsorption are greater in suckling and young animals relative to adults. This review discusses the known intestinal and renal adaptations that occur in young animals in order to achieve a positive phosphate balance. Additionally, we discuss the ontogenic changes in phosphotropic endocrine signalling as it pertains to intestinal and renal phosphate handling, including several endocrine factors not always considered in the traditional dogma of phosphotropic endocrine signalling, such as growth hormone, triiodothyronine, and glucocorticoids. Finally, a proposed model of how these factors may contribute to achieving a positive phosphate balance during development is proposed.
Collapse
|