1
|
Chu KB, Quan FS. Recent progress in vaccine development targeting pre-clinical human toxoplasmosis. PARASITES, HOSTS AND DISEASES 2023; 61:231-239. [PMID: 37648228 PMCID: PMC10471472 DOI: 10.3347/phd.22097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/30/2023] [Indexed: 09/01/2023]
Abstract
Toxoplasma gondii is an intracellular parasitic organism affecting all warm-blooded vertebrates. Due to the unavailability of commercialized human T. gondii vaccine, many studies have been reported investigating the protective efficacy of pre-clinical T. gondii vaccines expressing diverse antigens. Careful antigen selection and implementing multifarious immunization strategies could enhance protection against toxoplasmosis in animal models. Although none of the available vaccines could remove the tissue-dwelling parasites from the host organism, findings from these pre-clinical toxoplasmosis vaccine studies highlighted their developmental potential and provided insights into rational vaccine design. We herein explored the progress of T. gondii vaccine development using DNA, protein subunit, and virus-like particle vaccine platforms. Specifically, we summarized the findings from the pre-clinical toxoplasmosis vaccine studies involving T. gondii challenge infection in mice published in the past 5 years.
Collapse
Affiliation(s)
- Ki-Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute, School of Medicine, Kyung Hee University, Seoul 02447,
Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute, School of Medicine, Kyung Hee University, Seoul 02447,
Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447,
Korea
| |
Collapse
|
2
|
Protection Induced by Vaccination with Recombinant Baculovirus and Virus-like Particles Expressing Toxoplasma gondii Rhoptry Protein 18. Vaccines (Basel) 2022; 10:vaccines10101588. [PMID: 36298453 PMCID: PMC9609909 DOI: 10.3390/vaccines10101588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Heterologous immunization is garnering attention as a promising strategy to improve vaccine efficacy. Vaccines based on recombinant baculovirus (rBV) and virus-like particle (VLP) are safe for use, but heterologous immunization studies incorporating these two vaccine platforms remain unreported to date. Oral immunization is the simplest, most convenient, and safest means for mass immunization. In the present study, mice were immunized with the Toxoplasma gondii rhoptry protein 18 (ROP18)-expressing rBVs (rBVs-ROP18) and VLPs (VLPs-ROP18) via oral, intranasal, and intramuscular (IM) routes to evaluate the protection elicited against the intracellular parasite T. gondii ME49 strain. Overall, boost immunization with VLPs-ROP18 induced a significant increase in T. gondii-specific antibody response in all three immunization routes. Parasite-specific mucosal and cerebral antibody responses were observed from all immunization groups, but the highest mucosal IgA response was detected from the intestines of orally immunized mice. Antibody-secreting cell (ASC), CD8+ T cell, and germinal center B cell responses were strikingly similar across all three immunization groups. Oral immunization significantly reduced pro-inflammatory cytokine IL-6 in the brains as well as that by IN and IM. Importantly, all of the immunized mice survived against lethal challenge infections where body weight loss was negligible from all three immunizations. These results demonstrated that protection induced against T. gondii by oral rBV-VLP immunization regimen is just as effective as IN or IM immunizations.
Collapse
|
3
|
Kim MJ, Mao J, Kang HJ, Chu KB, Quan FS. Detection of Toxoplasma gondii Infections using Virus-Like Particles Displaying T. gondii ROP4 Antigen. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 59:565-572. [PMID: 34974663 PMCID: PMC8721301 DOI: 10.3347/kjp.2021.59.6.565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/27/2022]
Abstract
Toxoplasma gondii ME49 infections are typically diagnosed by serological tests. However, serological diagnosis of RH strain-induced toxoplasmosis remains unknown. In order to develop seradiagnosis of above 2 kinds of infections, we generated recombinant virus-like particles (VLPs) displaying the T. gondii rhoptry protein 4 (ROP4) and evaluated their potential in T. gondii ME49 or RH strain infection diagnostics. Mice were orally infected with either the tachyzoites of T. gondii (RH) or cysts of T. gondii (ME49) at various dosages, and sera were collected at regular intervals. ELISA-based serological tests were performed to assess IgG, IgM, and IgA antibody responses against ROP4 VLP antigen and tissue lysate antigen (TLA). Compared to TLA, IgG, IgM, and IgA levels to ROP4 VLP antigen were significantly higher in the sera of T. gondii RH-infected mice 1 and 2 week post-infection (PI). T. gondii-specific IgG antibody was detected at 1, 2, 4, and 8 week PI in the T. gondii ME49-infected mice with infection dose-dependent manner. These results indicated that the ROP4 VLP antigen was highly sensitive antigens detecting T. gondii RH and ME49 antibodies at an early stage.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447,
Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447,
Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447,
Korea
| | - Ki-Back Chu
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447,
Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447,
Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447,
Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447,
Korea
| |
Collapse
|
4
|
Passive Immunity and Antibody Response Induced by Toxoplasma gondii VLP Immunization. Vaccines (Basel) 2021; 9:vaccines9050425. [PMID: 33922808 PMCID: PMC8146287 DOI: 10.3390/vaccines9050425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
Passive immunity can provide immediate protection against infectious pathogens. To date, only a few studies have investigated the effect of passive immunization against Toxoplasma gondii, and the use of immune sera acquired from VLP-vaccinated mice for passive immunity assessment remains unreported. In this study, immune sera were produced by a single immunization with virus-like particles (VLPs) expressing the inner membrane complex (IMC), rhoptry protein 18 (ROP18), and microneme protein 8 (MIC8) of Toxoplasma gondii, with or without a CpG-ODN adjuvant. The passive immunization of immune sera conferred protection in mice, as indicated by their potent parasite-specific antibody response, lessened brain cyst counts, lower bodyweight loss, and enhanced survival. In order to confirm that the immune sera of the VLP-immunized mice were truly protective, the antibody responses and other immunological parameters were measured in the VLP-immunized mice. We found that VLP immunization induced higher levels of parasite-specific IgG, IgG subclass, and IgM antibody responses in the sera and intestines than in the controls. Enhanced Th1 and Th2-associated cytokines in the spleen, diminished brain cyst counts, and lessened body weight loss were found following T. gondii ME49 challenge infection. These results suggest that passive immunization with the immune sera acquired from VLP-vaccinated mice can confer adequate protection against T. gondii infection.
Collapse
|
5
|
Chu KB, Quan FS. Advances in Toxoplasma gondii Vaccines: Current Strategies and Challenges for Vaccine Development. Vaccines (Basel) 2021; 9:vaccines9050413. [PMID: 33919060 PMCID: PMC8143161 DOI: 10.3390/vaccines9050413] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Toxoplasmosis, caused by the apicomplexan parasite Toxoplasma gondii, is one of the most damaging parasite-borne zoonotic diseases of global importance. While approximately one-third of the entire world’s population is estimated to be infected with T. gondii, an effective vaccine for human use remains unavailable. Global efforts in pursuit of developing a T. gondii vaccine have been ongoing for decades, and novel innovative approaches have been introduced to aid this process. A wide array of vaccination strategies have been conducted to date including, but not limited to, nucleic acids, protein subunits, attenuated vaccines, and nanoparticles, which have been assessed in rodents with promising results. Yet, translation of these in vivo results into clinical studies remains a major obstacle that needs to be overcome. In this review, we will aim to summarize the current advances in T. gondii vaccine strategies and address the challenges hindering vaccine development.
Collapse
Affiliation(s)
- Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
6
|
Vázquez-Martínez JA, Gómez-Lim MA, Morales-Ríos E, Gonzalez-y-Merchand JA, Ortiz-Navarrete V. Short Disordered Epitope of CRTAM Ig-Like V Domain as a Potential Target for Blocking Antibodies. Int J Mol Sci 2020; 21:ijms21228798. [PMID: 33233764 PMCID: PMC7699905 DOI: 10.3390/ijms21228798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 11/25/2022] Open
Abstract
Class-I Restricted T Cell-Associated Molecule (CRTAM) is a protein that is expressed after T cell activation. The interaction of CRTAM with its ligand, nectin-like 2 (Necl2), is required for the efficient production of IL-17, IL-22, and IFNγ by murine CD4 T cells, and it plays a role in optimal CD8 T and NK cell cytotoxicity. CRTAM promotes the pro-inflammatory cytokine profile; therefore, it may take part in the immunopathology of autoimmune diseases such as diabetes type 1 or colitis. Thus, antibodies that block the interaction between CRTAM and Necl2 would be useful for controlling the production of these inflammatory cytokines. In this work, using bioinformatics predictions, we identified three short disordered epitopes (sDE1-3) that are located in the Ig-like domains of murine CRTAM and are conserved in mammalian species. We performed a structural analysis by molecular dynamics simulations of sDE1 (QHPALKSSKY, Ig-like V), sDE2 (QRNGEKSVVK, Ig-like C1), and sDE3 (CSTERSKKPPPQI, Ig-like C1). sDE1, which is located within a loop of the contact interface of the heterotypic interaction with Nectl2, undergoes an order–disorder transition. On the contrary, even though sDE2 and sDE3 are flexible and also located within loops, they do not undergo order–disorder transitions. We evaluated the immunogenicity of sDE1 and sDE3 through the expression of these epitopes in chimeric L1 virus-like particles. We confirmed that sDE1 induces polyclonal antibodies that recognize the native folding of CRTAM expressed in activated murine CD4 T cells. In contrast, sDE3 induces polyclonal antibodies that recognize the recombinant protein hCRTAM-Fc, but not the native CRTAM. Thus, in this study, an exposed disordered epitope in the Ig-like V domain of CRTAM was identified as a potential site for therapeutic antibodies.
Collapse
Affiliation(s)
- Julio Angel Vázquez-Martínez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de Mexico, Mexico; (J.A.V.-M.); (J.A.G.-y.-M.)
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 07360 Ciudad de Mexico, Mexico
- Departamento de Ingeniería Genética, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 36821 Irapuato, Guanajuato, Mexico;
| | - Miguel Angel Gómez-Lim
- Departamento de Ingeniería Genética, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 36821 Irapuato, Guanajuato, Mexico;
| | - Edgar Morales-Ríos
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 07360 Ciudad de Mexico, Mexico;
| | - Jorge Alberto Gonzalez-y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de Mexico, Mexico; (J.A.V.-M.); (J.A.G.-y.-M.)
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 07360 Ciudad de Mexico, Mexico
- Correspondence:
| |
Collapse
|
7
|
Kang HJ, Chu KB, Kim MJ, Lee SH, Park H, Jin H, Moon EK, Quan FS. Protective immunity induced by CpG ODN-adjuvanted virus-like particles containing Toxoplasma gondii proteins. Parasite Immunol 2020; 43:e12799. [PMID: 33058167 DOI: 10.1111/pim.12799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
AIMS To date, a Toxoplasma gondii vaccine for clinical use remains unavailable, though multiple vaccine candidates have been suggested. In our previous studies, unadjuvanted virus-like particles (VLPs) vaccines expressing multiple T. gondii antigens were confirmed to be protective against T. gondii challenge infection. Yet, the protective efficacy of adjuvanted T. gondii VLP in comparison with the unadjuvanted counterpart requires elucidation. METHODS AND RESULTS In the present study, mice were immunized with the multi-antigenic VLP vaccines (TG146 VLP) with or without CpG adjuvants and their protective efficacies were compared. CpG-adjuvanted TG146 VLP vaccine elicited enhanced T gondii-specific IgG and IgA antibody responses in the sera, mucosal tissue and the brain compared to unadjuvanted VLPs vaccine. Inclusion of CpG adjuvant in vaccines also induced greater CD4+ and CD8+ T-cell responses, as well as B cell and germinal centre B cell responses from splenocytes and mesenteric lymph nodes. Pro-inflammatory cytokine response and cyst counts in the brain were drastically diminished in mice immunized with CpG-adjuvanted VLP vaccines. CONCLUSION Our results demonstrated that CpG-adjuvanted T. gondii VLPs can significantly enhance the protective efficacy of vaccines against T. gondii infection.
Collapse
Affiliation(s)
- Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Su-Hwa Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | | | - Hui Jin
- Health Park Co., Ltd., Seoul, Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Korea.,Department of Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| |
Collapse
|
8
|
Evaluation of CpG-ODN-Adjuvanted Toxoplasma Gondii Virus-Like Particle Vaccine upon One, Two, and Three Immunizations. Pharmaceutics 2020; 12:pharmaceutics12100989. [PMID: 33086673 PMCID: PMC7588908 DOI: 10.3390/pharmaceutics12100989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Successful vaccines against specific pathogens often require multiple immunizations and adjuvant usage. Yet, assessing the protective efficacy of different immunization regimens with adjuvanted Toxoplasma gondii vaccines remains elusive. In this study, we investigated the vaccine efficacy induced by CpG-ODN-adjuvanted T. gondii virus-like particles (VLPs) after challenge infection with T. gondii (ME49) in mice (BALB/c) upon one, two, and three immunizations. Immunization with adjuvanted T. gondii VLPs induced higher levels of T. gondii-specific IgG and/or IgA antibody responses, germinal center (GC) B cells, total B cells, and CD4+ and CD8+ T cells compared with unadjuvanted VLPs. Increasing the number of immunizations was strongly correlated with enhanced protective immunity against T. gondii in mice, with the highest protection being demonstrated in mice thrice-immunized with either adjuvanted T. gondii VLPs or VLPs alone. Notably, lesser bodyweight reductions and cerebral cyst counts were observed in mice receiving multiple immunizations with the adjuvanted VLPs, thereby confirming the effectiveness of adjuvanted boost immunizations. These results demonstrated that multiple immunizations with T. gondii VLPs is an effective approach, and the CpG-ODN can be developed as an effective adjuvant for T. gondii VLP vaccines.
Collapse
|
9
|
Lee SH, Chu KB, Kang HJ, Basak S, Kim MJ, Park H, Jin H, Moon EK, Quan FS. Virus-like particles expressing Plasmodium berghei MSP-8 induce protection against P. berghei infection. Parasite Immunol 2020; 42:e12781. [PMID: 32738150 DOI: 10.1111/pim.12781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 11/29/2022]
Abstract
AIMS Merozoite surface protein 8 (MSP-8) of Plasmodium parasites plays an important role in erythrocyte invasion and is a potential malaria vaccine candidate. METHODS AND RESULTS In this study, virus-like particles (VLPs) expressing MSP-8 of Plasmodium berghei on the surface of influenza virus matrix protein 1 (M1) core protein were generated for vaccine efficacy assessment. Mice were intramuscularly (IM) immunized with MSP-8 VLPs twice and challenge-infected with P. berghei. We found that VLP vaccination elicited higher levels of P. berghei-specific IgG antibody response in the sera, along with blood CD4+ and CD8+ T-cell response enhancement compared to the naïve control mice. CD4+ and CD8+ effector memory T-cell and memory B-cell responses in the spleen were found to be higher in VLP-immunized mice compared to control mice. VLP vaccination significantly reduced inflammatory cytokine (IFN-γ) response in the spleen and parasitemia levels in blood compared to naïve control mice. CONCLUSIONS These results indicate that MSP-8 containing virus-like particles could be a vaccine candidate for blood-stage vaccine design.
Collapse
Affiliation(s)
- Su-Hwa Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Swarnendu Basak
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | | | - Hui Jin
- Health Park Co., Ltd., Seoul, Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Korea.,Department of Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul, Korea
| |
Collapse
|
10
|
Kang H, Chu K, Lee S, Kim M, Park H, Jin H, Moon E, Quan F. Toxoplasma gondii
virus‐like particle vaccination alleviates inflammatory response in the brain upon
T gondii
infection. Parasite Immunol 2020; 42:e12716. [DOI: 10.1111/pim.12716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Hae‐Ji Kang
- Department of Biomedical Science Graduate School Kyung Hee University Seoul Korea
| | - Ki‐Back Chu
- Department of Biomedical Science Graduate School Kyung Hee University Seoul Korea
| | - Su‐Hwa Lee
- Department of Biomedical Science Graduate School Kyung Hee University Seoul Korea
| | - Min‐Ju Kim
- Department of Biomedical Science Graduate School Kyung Hee University Seoul Korea
| | | | - Hui Jin
- Health Park Co., Ltd Seoul Korea
| | - Eun‐Kyung Moon
- Department of Medical Zoology Kyung Hee University School of Medicine Seoul Korea
| | - Fu‐Shi Quan
- Department of Medical Zoology Kyung Hee University School of Medicine Seoul Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute School of Medicine Graduate School Kyung Hee University Seoul Korea
| |
Collapse
|