1
|
Shrivastava R, Gandhi P, Sorte SK, Shrivastava A. Characterizing the Linkage of Systemic Hypoxia and Angiogenesis in High-Grade Glioma to Define the Changes in Tumor Microenvironment for Predicting Prognosis. J Mol Neurosci 2024; 74:63. [PMID: 38967861 DOI: 10.1007/s12031-024-02240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
High-grade gliomas (HGG) comprising WHO grades 3 and 4 have a poor overall survival (OS) that has not improved in the past decade. Herein, markers representing four components of the tumor microenvironment (TME) were identified to define their linked expression in TME and predict the prognosis in HGG, namely, interleukin6 (IL6, inflammation), inducible nitric oxide synthase(iNOS), heat shock protein-70 (HSP70, hypoxia), vascular endothelial growth receptor (VEGF), and endothelin1 (ET1) (angiogenesis) and matrix metalloprotease-14 (MMP14) and intercellular adhesion molecule1 (ICAM1, extracellular matrix). To establish a non-invasive panel of biomarkers for precise prognostication in HGG. Eighty-six therapy-naive HGG patients with 45 controls were analyzed for the defined panel. Systemic expression of extracellular/secretory biomarkers was screened dot-immune assay (DIA), quantified by ELISA, and validated by immunocytochemistry (ICC). Expression of iNOS, HSP70, IL-6, VEGF, ET1, MMP14, and ICAM1 was found to be positively associated with grade. Quantification of circulating levels of the markers by ELISA and ICC presented a similar result. The biomarkers were observed to negatively correlate with OS (p < 0.0001). Cox-regression analysis yielded all biomarkers as good prognostic indicators and independent of confounders. On applying combination statistics, the biomarker panel achieved higher sensitivity than single markers to define survival. The intra-association of all seven biomarkers was significant, hinting of a cross-talk between the TME components and a hypoxia driven systemic inflammation upregulating the expression of other components. This is a first ever experimental study of a marker panel that can distinguish between histopathological grades and also delineate differential survival using liquid biopsy, suggesting that markers of hypoxia can be a cornerstone for personalized therapy. The panel of biomarkers of iNOS, HSP70, IL-6, VEGF, ET1, MMP14, and ICAM1 holds promise for prognostication in HGG.
Collapse
Affiliation(s)
- Richa Shrivastava
- Department of Research and Training, ICMR-Bhopal Memorial Hospital and Research Centre, Bhopal, 462038, M.P, India
| | - Puneet Gandhi
- Department of Research and Training, ICMR-Bhopal Memorial Hospital and Research Centre, Bhopal, 462038, M.P, India.
| | - Sandeep K Sorte
- Department of Neurosurgery, ICMR-Bhopal Memorial Hospital and Research Centre, Raisen Bypass Road, Bhopal, 462038, M.P, India
| | - Adesh Shrivastava
- Department of Neurosurgery, All India Institute of Medical Sciences, Bhopal, 462024, M.P, India
| |
Collapse
|
2
|
Rashid A, Brusletto BS, Al-Obeidat F, Toufiq M, Benakatti G, Brierley J, Malik ZA, Hussain Z, Alkhazaimi H, Sharief J, Kadwa R, Sarpal A, Chaussabel D, Malik RA, Quraishi N, Khilnani P, Zaki SA, Nadeem R, Shaikh G, Al-Dubai A, Hafez W, Hussain A. A TRANSCRIPTOMIC APPRECIATION OF CHILDHOOD MENINGOCOCCAL AND POLYMICROBIAL SEPSIS FROM A PRO-INFLAMMATORY AND TRAJECTORIAL PERSPECTIVE, A ROLE FOR VASCULAR ENDOTHELIAL GROWTH FACTOR A AND B MODULATION? Shock 2023; 60:503-516. [PMID: 37553892 PMCID: PMC10581425 DOI: 10.1097/shk.0000000000002192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/12/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023]
Abstract
ABSTRACT This study investigated the temporal dynamics of childhood sepsis by analyzing gene expression changes associated with proinflammatory processes. Five datasets, including four meningococcal sepsis shock (MSS) datasets (two temporal and two longitudinal) and one polymicrobial sepsis dataset, were selected to track temporal changes in gene expression. Hierarchical clustering revealed three temporal phases: early, intermediate, and late, providing a framework for understanding sepsis progression. Principal component analysis supported the identification of gene expression trajectories. Differential gene analysis highlighted consistent upregulation of vascular endothelial growth factor A (VEGF-A) and nuclear factor κB1 (NFKB1), genes involved in inflammation, across the sepsis datasets. NFKB1 gene expression also showed temporal changes in the MSS datasets. In the postmortem dataset comparing MSS cases to controls, VEGF-A was upregulated and VEGF-B downregulated. Renal tissue exhibited higher VEGF-A expression compared with other tissues. Similar VEGF-A upregulation and VEGF-B downregulation patterns were observed in the cross-sectional MSS datasets and the polymicrobial sepsis dataset. Hexagonal plots confirmed VEGF-R (VEGF receptor)-VEGF-R2 signaling pathway enrichment in the MSS cross-sectional studies. The polymicrobial sepsis dataset also showed enrichment of the VEGF pathway in septic shock day 3 and sepsis day 3 samples compared with controls. These findings provide unique insights into the dynamic nature of sepsis from a transcriptomic perspective and suggest potential implications for biomarker development. Future research should focus on larger-scale temporal transcriptomic studies with appropriate control groups and validate the identified gene combination as a potential biomarker panel for sepsis.
Collapse
Affiliation(s)
- Asrar Rashid
- School of Computing, Edinburgh Napier University, Edinburgh, United Kingdom
- NMC Royal Hospital, Abu Dhabi, United Arab Emirates
| | - Berit S. Brusletto
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Norway
| | - Feras Al-Obeidat
- College of Technological Innovation at Zayed University, Abu Dhabi, United Arab Emirates
| | - Mohammed Toufiq
- The Jackson Laboratory for Genomic Medicine Farmington, Connecticut, USA
| | - Govind Benakatti
- Medanta Gururam, Delhi, India
- Yas Clinic, Abu Dhabi, United Arab Emirates
| | - Joe Brierley
- Great Ormond Street Children's Hospital, London, United Kingdom
| | - Zainab A. Malik
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Zain Hussain
- Edinburgh Medical School, University go Edinburgh, Edinburgh, United Kingdom
| | | | | | - Raziya Kadwa
- NMC Royal Hospital, Abu Dhabi, United Arab Emirates
| | - Amrita Sarpal
- Sidra Medicine, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Damien Chaussabel
- The Jackson Laboratory for Genomic Medicine Farmington, Connecticut, USA
| | - Rayaz A. Malik
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Institute of Cardiovascular Science, University of Manchester, Manchester, United Kingdom
| | - Nasir Quraishi
- Centre for Spinal Studies & Surgery, Queen's Medical Centre, The University of Nottingham, Nottingham, United Kingdom
| | | | - Syed A. Zaki
- All India Institute of Medical Sciences, Hyderabad, India
| | | | - Guftar Shaikh
- Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Ahmed Al-Dubai
- School of Computing, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Wael Hafez
- NMC Royal Hospital, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo, Egypt
| | - Amir Hussain
- School of Computing, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Sundblom J, Skare TP, Holm O, Welin S, Braun M, Nilsson P, Enblad P, Sjöström EO, Smits A. Central nervous system hemangioblastomas in von Hippel-Lindau disease: Total growth rate and risk of developing new lesions not associated with circulating VEGF levels. PLoS One 2022; 17:e0278166. [PMID: 36441756 PMCID: PMC9704563 DOI: 10.1371/journal.pone.0278166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Hemangioblastomas of the central nervous system are a prominent feature of von Hippel-Lindau-disease (vHL). Hemangioblastomas are known to secrete vascular endothelial growth factor (VEGF), suggesting a potential role of VEGF as a biomarker for tumor growth. METHODS Plasma VEGF samples from 24 patients with von Hippel-Lindau disease were analyzed by solid-phase proximity ligation assay (PLA). Levels were monitored over time together with numeric and volumetric CNS tumor burden, and compared to plasma VEGF levels in healthy controls. RESULTS The mean yearly progression in tumor volume was 65.5%. Yearly risk of developing one or several new CNS tumor(s) was 50%. No significant correlation between tumor burden and levels of VEGF was seen. VEGF levels in patients (31.55-92.04; mean 55.83, median 56.41) as measured by immunodetection in a solid-phase PLA did not differ significantly from controls (37.38-104.56; mean 58.89, median 54.12) (p = 0,266). CONCLUSION The increase in total CNS tumor volume in vHL occurred in a saltatory manner. The risk of developing a new lesion was 50% per year. We found no evidence for VEGF secretion from CNS hemangioblastomas in vHL in circulating blood. Other potential biomarkers should be explored to assess progression of tumor burden in vHL.
Collapse
Affiliation(s)
- Jimmy Sundblom
- Department of Neuroscience, Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
- * E-mail:
| | - Tor Persson Skare
- Department of Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Olivia Holm
- Department of Neuroscience, Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | - Staffan Welin
- Department of Medical Sciences, Endocrine Oncology, Uppsala University Hospital, Uppsala, Sweden
| | - Madelene Braun
- Department of Neuroscience, Neurology, Uppsala University Hospital, Uppsala, Sweden
| | - Pelle Nilsson
- Department of Neuroscience, Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | - Elisabet Ohlin Sjöström
- Department of Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Anja Smits
- Department of Neuroscience, Neurology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
4
|
Lu M, Liu Y, Xian Z, Yu X, Chen J, Tan S, Zhang P, Guo Y. VEGF to CITED2 ratio predicts the collateral circulation of acute ischemic stroke. Front Neurol 2022; 13:1000992. [PMID: 36247751 PMCID: PMC9563238 DOI: 10.3389/fneur.2022.1000992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Objective The research objective was to evaluate the predicting role of the vascular endothelial growth factor to CBP/P300-interacting transactivator with Glu/Asp-rich C-terminal domain 2 Ratio (VEGF/CITED2) from peripheral blood mononuclear cells (PBMCs) in the collateral circulation of acute ischemic stroke (AIS). Methods In an observational study of patients with AIS, the western blot was applied to test the protein expression of VEGF and CITED2. Then, we calculated the VEGF/CITED2 and collected other clinical data. Binary logistic regression analysis between collateral circulation and clinical data was performed. Finally, receiver operating characteristic (ROC) curve analysis was used to explore the predictive value of VEGF/CITED2. Results A total of 67 patients with AIS were included in the study. Binary logistic regression analysis indicated the VEGF/CITED2 (OR 165.79, 95%CI 7.25–3,791.54, P = 0.001) was an independent protective factor. The ROC analyses showed an area under the ROC curve of the VEGF/CITED2 was 0.861 (95%CI 0.761–0.961). The optimal cutoff value of 1.013 for VEGF/CITED2 had a sensitivity of 89.1% and a specificity of 85.7%. Conclusion In patients with AIS, the VEGF/CITED2 was related to the establishment of collateral circulation. The VEGF/CITED2 is a potentially valuable biomarker for predicting collateral circulation. Clinical trial registration ClinicalTrials.gov, identifier: NCT05345366.
Collapse
Affiliation(s)
- Minyi Lu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuben Liu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiqiang Xian
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyao Yu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Chen
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sheng Tan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peidong Zhang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Peidong Zhang
| | - Yang Guo
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Yang Guo
| |
Collapse
|
5
|
Monocyte Infiltration and Differentiation in 3D Multicellular Spheroid Cancer Models. Pathogens 2021; 10:pathogens10080969. [PMID: 34451433 PMCID: PMC8399809 DOI: 10.3390/pathogens10080969] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023] Open
Abstract
Tumor-associated macrophages often correlate with tumor progression, and therapies targeting immune cells in tumors have emerged as promising treatments. To select effective therapies, we established an in vitro 3D multicellular spheroid model including cancer cells, fibroblasts, and monocytes. We analyzed monocyte infiltration and differentiation in spheroids generated from fibroblasts and either of the cancer cell lines MCF-7, HT-29, PANC-1, or MIA PaCa-2. Monocytes rapidly infiltrated spheroids and differentiated into mature macrophages with diverse phenotypes in a cancer cell line-dependent manner. MIA PaCa-2 spheroids polarized infiltrating monocytes to M2-like macrophages with high CD206 and CD14 expression, whereas monocytes polarized by MCF-7 spheroids displayed an M1-like phenotype. Monocytes in HT-29 and PANC-1 primarily obtained an M2-like phenotype but also showed upregulation of M1 markers. Analysis of the secretion of 43 soluble factors demonstrated that the cytokine profile between spheroid cultures differed considerably depending on the cancer cell line. Secretion of most of the cytokines increased upon the addition of monocytes resulting in a more inflammatory and pro-tumorigenic environment. These multicellular spheroids can be used to recapitulate the tumor microenvironment and the phenotype of tumor-associated macrophages in vitro and provide more realistic 3D cancer models allowing the in vitro screening of immunotherapeutic compounds.
Collapse
|
6
|
Baek SK, Lee MW, Lee YH. Effect of Intrasilicone Bevacizumab Injection in Diabetic Tractional Retinal Detachment Surgery: A Retrospective Case-Control Study. J Clin Med 2020; 9:jcm9103114. [PMID: 32993113 PMCID: PMC7601065 DOI: 10.3390/jcm9103114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 11/20/2022] Open
Abstract
Tractional retinal detachment (TRD) causes visual loss in diabetes mellitus patients. Silicone oil can be used as a tamponade to repair retinal detachment; however, intrasilicone injection is challenging. We aimed to evaluate the effect of intrasilicone bevacizumab injection in TRD surgery. This was a single-hospital, retrospective, case-control study of 44 patients (46 eyes). We reviewed medical histories and ophthalmic examination results. We administered silicone oil to 26 eyes (group I), and a combination of silicone oil and intravitreal bevacizumab injection to 20 eyes (group II). The main outcome measures were the logarithm of the minimum angle of resolution (logMAR) visual acuity and central macular thickness. Mean change in logMAR visual acuity was larger (p = 0.029) in group II (−0.99 ± 0.73) than in group I (−0.56 ± 0.80), 12 months postoperatively. Compared to group I, group II exhibited a lower mean (471.54 ± 120.14 μm vs. 363.40 ± 59.57 µm, respectively; p = 0.001), and mean change (−22.39 ± 203.99 μm vs. −72.40 ± 139.35 µm, respectively; p = 0.027), in central macular thickness, 1 month postoperatively. Intrasilicone bevacizumab injection immediately after vitrectomy may rapidly reduce central macular thickness and increase final visual acuity. Prospective studies are necessary to demonstrate long-term safety and efficacy.
Collapse
Affiliation(s)
| | | | - Young-Hoon Lee
- Correspondence: ; Tel.: +82-10-3410-0329; Fax: +82-42-600-9250
| |
Collapse
|
7
|
VEGF-A in Cardiomyocytes and Heart Diseases. Int J Mol Sci 2020; 21:ijms21155294. [PMID: 32722551 PMCID: PMC7432634 DOI: 10.3390/ijms21155294] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
The vascular endothelial growth factor (VEGF), a homodimeric vasoactive glycoprotein, is the key mediator of angiogenesis. Angiogenesis, the formation of new blood vessels, is responsible for a wide variety of physio/pathological processes, including cardiovascular diseases (CVD). Cardiomyocytes (CM), the main cell type present in the heart, are the source and target of VEGF-A and express its receptors, VEGFR1 and VEGFR2, on their cell surface. The relationship between VEGF-A and the heart is double-sided. On the one hand, VEGF-A activates CM, inducing morphogenesis, contractility and wound healing. On the other hand, VEGF-A is produced by CM during inflammation, mechanical stress and cytokine stimulation. Moreover, high concentrations of VEGF-A have been found in patients affected by different CVD, and are often correlated with an unfavorable prognosis and disease severity. In this review, we summarized the current knowledge about the expression and effects of VEGF-A on CM and the role of VEGF-A in CVD, which are the most important cause of disability and premature death worldwide. Based on clinical studies on angiogenesis therapy conducted to date, it is possible to think that the control of angiogenesis and VEGF-A can lead to better quality and span of life of patients with heart disease.
Collapse
|
8
|
Gorenjak V, Vance DR, Petrelis AM, Stathopoulou MG, Dadé S, El Shamieh S, Murray H, Masson C, Lamont J, Fitzgerald P, Visvikis-Siest S. Correction: Peripheral blood mononuclear cells extracts VEGF protein levels and VEGF mRNA: Associations with inflammatory molecules in a healthy population. PLoS One 2019; 14:e0224591. [PMID: 31648287 PMCID: PMC6812808 DOI: 10.1371/journal.pone.0224591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|