1
|
Varandas R, Barroso C, Conceição IL, Egas C. Molecular insights into Solanum sisymbriifolium's resistance against Globodera pallida via RNA-seq. BMC PLANT BIOLOGY 2024; 24:1005. [PMID: 39455908 PMCID: PMC11515252 DOI: 10.1186/s12870-024-05694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND The presence of potato cyst nematodes (PCN) causes a significant risk to potato crops globally, leading to reduced yields and economic losses. While the plant Solanum sisymbriifolium is known for its resistance to PCN and can be used as a trap crop, the molecular mechanisms behind this resistance remain poorly understood. In this study, genes differentially expressed were identified in control and infected plants during the early stages of the S. sisymbriifolium - G. pallida interaction. RESULTS Gene expression profiles were characterized for two S. sisymbriifolium cultivars, Melody and Sis6001, uninfected and infected by G. pallida. The comparative transcriptome analysis revealed a total of 4,087 and 2,043 differentially expressed genes (DEGs) in response to nematode infection in the cultivars Melody and Sis6001, respectively. Gene ontology (GO) enrichment analysis provided insights into the response of the plant to nematode infection, indicating an activation of the plant metabolism, oxidative stress leading to defence mechanism activation, and modification of the plant cell wall. Genes associated with the jasmonic and salicylic acid pathways were also found to be differentially expressed, suggesting their involvement in the plant's defence response. In addition, the analysis of NBS-LRR domain-containing transcripts that play an important role in hypersensitive response and programmed cell death led to the identification of ten transcripts that had no annotations from the databases, with emphasis on TRINITY_DN52667_C1_G1, found to be upregulated in both cultivars. CONCLUSIONS These findings represent an important step towards understanding the molecular basis underlying plant resistance to nematodes and facilitating the development of more effective control strategies against PCN.
Collapse
Affiliation(s)
- Raquel Varandas
- Centre for Functional Ecology-Science for People & the Planet (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, 3000-456, Portugal.
| | - Cristina Barroso
- Next Generation Sequencing Unit, Biocant Park, Núcleo 04, Lote 8, Cantanhede, 3060-197, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Pólo I, Coimbra, 3004-504, Portugal
| | - Isabel Luci Conceição
- Centre for Functional Ecology-Science for People & the Planet (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, 3000-456, Portugal
| | - Conceição Egas
- Next Generation Sequencing Unit, Biocant Park, Núcleo 04, Lote 8, Cantanhede, 3060-197, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Pólo I, Coimbra, 3004-504, Portugal
| |
Collapse
|
2
|
Krithika VP, Shandeep G, Bellie A, Gulsar Banu J, Mannu J, Suganthy M, Gomathi V, Uma D, Mohan P. Harnessing nature's arsenal: Ochrobactrum bacteria metabolites in the battle against root- knot nematode - Insights from in vitro and molecular docking studies. J Invertebr Pathol 2024; 204:108114. [PMID: 38636720 DOI: 10.1016/j.jip.2024.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Agricultural Productivity and plant health are threatened by the root-knot nematode. The use of biocontrol agents reduces the need for chemical nematicides and improves the general health of agricultural ecosystems by offering a more environmentally friendly and sustainable method of managing nematode infestations. Plant-parasitic nematodes can be efficiently managed with the use of entomopathogenic nematodes (EPNs), which are widely used biocontrol agents. This study focused on the nematicidal activity of the secondary metabolites present in the bacteria Ochrobactrum sp. identified in the EPN, Heterorhabditisindica against Root-Knot Nematode (Meloidogyne incognita). Its effect on egg hatching and survival of juveniles of root- knot nematode (RKN) was examined. The ethyl acetate component of the cell-free culture (CFC) filtrate of the Ochrobactrum sp. bacteria was tested at four different concentrations (25 %, 50 %, 75 % and 100 %) along with broth and distilled water as control. The bioactive compounds of Ochrobactrum sp. bacteria showed the highest suppression of M. incognita egg hatching (100 %) and juvenile mortality (100 %) at 100 % concentration within 24 h of incubation. In this study, unique metabolite compounds were identified through the Gas Chromatography- Mass Spectrometry (GC-MS) analysis, which were found to have anti- nematicidal activity. In light of this, molecular docking studies were conducted to determine the impact of biomolecules from Ochrobactrum sp. using significant proteins of M. incognita, such as calreticulin, sterol carrier protein 2, flavin-containing monooxygenase, pectate lyase, candidate secreted effector, oesophageal gland cell secretory protein and venom allergen-like protein. The results also showed that the biomolecules from Ochrobactrum sp. had a significant inhibitory effect on the different protein targets of M. incognita. 3-Epimacronine and Heraclenin were found to inhibit most of the chosen target protein. Among the targets, the docking analysis revealed that Heraclenin exhibited the highest binding affinity of -8.6 Kcal/mol with the target flavin- containing monooxygenase. Further, the in vitro evaluation of 3- Epimacronine confirmed their nematicidal activity against M. incognita at different concentrations. In light of this, the present study has raised awareness of the unique biomolecules of the bacterial symbiont Ochrobactrum sp. isolated from H. indica that have nematicidal properties.
Collapse
Affiliation(s)
- V P Krithika
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - Ganeshan Shandeep
- Department of Nematology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Anita Bellie
- Department of Nematology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - J Gulsar Banu
- Principal Scientist (Nematology), ICAR-Central Institute for Cotton Research, Coimbatore, Tamil Nadu, India
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - M Suganthy
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - V Gomathi
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - D Uma
- Department of Biochemistry, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Prasanthrajan Mohan
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
3
|
Wang Z, Wang W, Wu W, Wang H, Zhang S, Ye C, Guo L, Wei Z, Huang H, Liu Y, Zhu S, Zhu Y, Wang Y, He X. Integrated analysis of transcriptome, metabolome, and histochemistry reveals the response mechanisms of different ages Panax notoginseng to root-knot nematode infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1258316. [PMID: 37780502 PMCID: PMC10539906 DOI: 10.3389/fpls.2023.1258316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Panax notoginseng (P. notoginseng) is an invaluable perennial medicinal herb. However, the roots of P. notoginseng are frequently subjected to severe damage caused by root-knot nematode (RKN) infestation. Although we have observed that P. notoginseng possessed adult-plant resistance (APR) against RKN disease, the defense response mechanisms against RKN disease in different age groups of P. notoginseng remain unexplored. We aimed to elucidate the response mechanisms of P. notoginseng at different stages of development to RKN infection by employing transcriptome, metabolome, and histochemistry analyses. Our findings indicated that distinct age groups of P. notoginseng may activate the phenylpropanoid and flavonoid biosynthesis pathways in varying ways, leading to the synthesis of phenolics, flavonoids, lignin, and anthocyanin pigments as both the response and defense mechanism against RKN attacks. Specifically, one-year-old P. notoginseng exhibited resistance to RKN through the upregulation of 5-O-p-coumaroylquinic acid and key genes involved in monolignol biosynthesis, such as PAL, CCR, CYP73A, CYP98A, POD, and CAD. Moreover, two-year-old P. notoginseng enhanced the resistance by depleting chlorogenic acid and downregulating most genes associated with monolignol biosynthesis, while concurrently increasing cyanidin and ANR in flavonoid biosynthesis. Three-year-old P. notoginseng reinforced its resistance by significantly increasing five phenolic acids related to monolignol biosynthesis, namely p-coumaric acid, chlorogenic acid, 1-O-sinapoyl-D-glucose, coniferyl alcohol, and ferulic acid. Notably, P. notoginseng can establish a lignin barrier that restricted RKN to the infection site. In summary, P. notoginseng exhibited a potential ability to impede the further propagation of RKN through the accumulation or depletion of the compounds relevant to resistance within the phenylpropanoid and flavonoid pathways, as well as the induction of lignification in tissue cells.
Collapse
Affiliation(s)
- Zhuhua Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wenpeng Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, Yunnan, China
| | - Wentao Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Huiling Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shuai Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Chen Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Liwei Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhaoxia Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hongping Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yang Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- School of Landscape and Horticulture, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Basso MF, Lourenço-Tessutti IT, Moreira-Pinto CE, Mendes RAG, Pereira DG, Grandis A, Macedo LLP, Macedo AF, Gomes ACMM, Arraes FBM, Togawa RC, do Carmo Costa MM, Marcelino-Guimaraes FC, Silva MCM, Floh EIS, Buckeridge MS, de Almeida Engler J, Grossi-de-Sa MF. Overexpression of the GmEXPA1 gene reduces plant susceptibility to Meloidogyne incognita. PLANT CELL REPORTS 2023; 42:137-152. [PMID: 36348064 DOI: 10.1007/s00299-022-02941-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The overexpression of the soybean GmEXPA1 gene reduces plant susceptibility to M. incognita by the increase of root lignification. Plant expansins are enzymes that act in a pH-dependent manner in the plant cell wall loosening and are associated with improved tolerance or resistance to abiotic or biotic stresses. Plant-parasitic nematodes (PPN) can alter the expression profile of several expansin genes in infected root cells. Studies have shown that overexpression or downregulation of particular expansin genes can reduce plant susceptibility to PPNs. Root-knot nematodes (RKN) are obligate sedentary endoparasites of the genus Meloidogyne spp. of which M. incognita is one of the most reported species. Herein, using a transcriptome dataset and real-time PCR assays were identified an expansin A gene (GmEXPA1; Glyma.02G109100) that is upregulated in the soybean nematode-resistant genotype PI595099 compared to the susceptible cultivar BRS133 during plant parasitism by M. incognita. To understand the role of the GmEXPA1 gene during the interaction between soybean plant and M. incognita were generated stable A. thaliana and N. tabacum transgenic lines. Remarkably, both A. thaliana and N. tabacum transgenic lines overexpressing the GmEXPA1 gene showed reduced susceptibility to M. incognita. Furthermore, plant growth, biomass accumulation, and seed yield were not affected in these transgenic lines. Interestingly, significant upregulation of the NtACC oxidase and NtEFE26 genes, involved in ethylene biosynthesis, and NtCCR and Nt4CL genes, involved in lignin biosynthesis, was observed in roots of the N. tabacum transgenic lines, which also showed higher lignin content. These data suggested a possible link between GmEXPA1 gene expression and increased lignification of the root cell wall. Therefore, these data support that engineering of the GmEXPA1 gene in soybean offers a powerful biotechnology tool to assist in RKN management.
Collapse
Affiliation(s)
- Marcos Fernando Basso
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Isabela Tristan Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Clidia Eduarda Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil
- Federal University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Reneida Aparecida Godinho Mendes
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil
- Federal University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Debora Gonçalves Pereira
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil
- Federal University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Adriana Grandis
- Department of Botany, Biosciences Institute, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Leonardo Lima Pepino Macedo
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Amanda Ferreira Macedo
- Department of Botany, Biosciences Institute, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | | | - Fabrício Barbosa Monteiro Arraes
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Roberto Coiti Togawa
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Marcos Mota do Carmo Costa
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil
| | - Francismar Corrêa Marcelino-Guimaraes
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
- Embrapa Soybean, Londrina, PR, 86001-970, Brazil
| | - Maria Cristina Mattar Silva
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Eny Iochevet Segal Floh
- Department of Botany, Biosciences Institute, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | | | - Janice de Almeida Engler
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
- INRAE, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil.
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil.
- Catholic University of Brasília, Brasília, DF, 71966-700, Brazil.
| |
Collapse
|
5
|
Arraes FBM, Vasquez DDN, Tahir M, Pinheiro DH, Faheem M, Freitas-Alves NS, Moreira-Pinto CE, Moreira VJV, Paes-de-Melo B, Lisei-de-Sa ME, Morgante CV, Mota APZ, Lourenço-Tessutti IT, Togawa RC, Grynberg P, Fragoso RR, de Almeida-Engler J, Larsen MR, Grossi-de-Sa MF. Integrated Omic Approaches Reveal Molecular Mechanisms of Tolerance during Soybean and Meloidogyne incognita Interactions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202744. [PMID: 36297768 PMCID: PMC9612212 DOI: 10.3390/plants11202744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 05/08/2023]
Abstract
The root-knot nematode (RKN), Meloidogyne incognita, is a devastating soybean pathogen worldwide. The use of resistant cultivars is the most effective method to prevent economic losses caused by RKNs. To elucidate the mechanisms involved in resistance to RKN, we determined the proteome and transcriptome profiles from roots of susceptible (BRS133) and highly tolerant (PI 595099) Glycine max genotypes 4, 12, and 30 days after RKN infestation. After in silico analysis, we described major defense molecules and mechanisms considered constitutive responses to nematode infestation, such as mTOR, PI3K-Akt, relaxin, and thermogenesis. The integrated data allowed us to identify protein families and metabolic pathways exclusively regulated in tolerant soybean genotypes. Among them, we highlighted the phenylpropanoid pathway as an early, robust, and systemic defense process capable of controlling M. incognita reproduction. Associated with this metabolic pathway, 29 differentially expressed genes encoding 11 different enzymes were identified, mainly from the flavonoid and derivative pathways. Based on differential expression in transcriptomic and proteomic data, as well as in the expression profile by RT-qPCR, and previous studies, we selected and overexpressed the GmPR10 gene in transgenic tobacco to assess its protective effect against M. incognita. Transgenic plants of the T2 generation showed up to 58% reduction in the M. incognita reproduction factor. Finally, data suggest that GmPR10 overexpression can be effective against the plant parasitic nematode M. incognita, but its mechanism of action remains unclear. These findings will help develop new engineered soybean genotypes with higher performance in response to RKN infections.
Collapse
Affiliation(s)
- Fabricio B M Arraes
- Postgraduate Program in Cellular and Molecular Biology (PPGBCM), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Daniel D N Vasquez
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Genomic Sciences and Biotechnology (PPGCGB), Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| | - Muhammed Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Daniele H Pinheiro
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Muhammed Faheem
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- Department of Biological Sciences, National University of Medical Sciences, The Mall, Rawalpindi 46000, Punjab, Pakistan
| | - Nayara S Freitas-Alves
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Bioprocess Engineering and Biotechnology (PPGEBB), Federal University of Paraná (UFPR), Curitiba 80060-000, PR, Brazil
| | - Clídia E Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
| | - Valdeir J V Moreira
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Molecular Biology (PPGBiomol), University of Brasilia (UnB), Brasília 70910-900, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
| | - Maria E Lisei-de-Sa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Minas Gerais Agricultural Research Company (EPAMIG), Uberaba 31170-495, MG, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Embrapa Semiarid, Petrolina 56302-970, PE, Brazil
| | - Ana P Z Mota
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Roberto C Togawa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Priscila Grynberg
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Rodrigo R Fragoso
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Embrapa Agroenergy, Brasilia 70770-901, DF, Brazil
| | - Janice de Almeida-Engler
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Genomic Sciences and Biotechnology (PPGCGB), Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| |
Collapse
|
6
|
dos Santos C, Carmo LST, Távora FTPK, Lima RFC, da Nobrega Mendes P, Labuto. LBD, de Sá MEL, Grossi-de-Sa MF, Mehta A. Overexpression of cotton genes GhDIR4 and GhPRXIIB in Arabidopsis thaliana improves plant resistance to root-knot nematode ( Meloidogyne incognita) infection. 3 Biotech 2022; 12:211. [PMID: 35945986 PMCID: PMC9357244 DOI: 10.1007/s13205-022-03282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/27/2022] [Indexed: 11/01/2022] Open
Abstract
Gossypium hirsutum L. represents the best cotton species for fiber production, thus computing the largest cultivated area worldwide. Meloidogyne incognita is a root-knot nematode (RKN) and one of the most important species of Meloidogyne genus, which has a wide host range, including cotton plants. Phytonematode infestations can only be partially controlled by conventional agricultural methods, therefore, more effective strategies to improve cotton resistance to M. incognita disease are highly desirable. The present study employed functional genomics to validate the involvement of two previously identified candidate genes, encoding dirigent protein 4-GhDIR4 and peroxiredoxin-2-GhPRXIIB, in cotton defense against M. incognita. Transgenic A. thaliana plant lines overexpressing GhDIR4 and GhPRXIIB genes were generated and displayed significantly improved resistance against M. incognita infection in terms of female nematode abundance in the roots when compared to wild-type control plants. For our best target-gene GhDIR4, an in-silico functional analysis, including multiple sequence alignment, phylogenetic relationship, and search for specific protein motifs unveiled potential orthologs in other relevant crop plants, including monocots and dicots. Our findings provide valuable information for further understanding the roles of GhDIR and GhPRXIIB genes in cotton defense response against RKN nematode. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03282-4.
Collapse
Affiliation(s)
- Cristiane dos Santos
- Universidade Católica Dom Bosco, Mato Grosso Do Sul, MS Brazil
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF Brazil
| | | | - Fabiano T. P. K. Távora
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF Brazil
- Embrapa Agroenergia, Brasília, DF Brazil
- Universidade de Brasília, Brasília, DF Brazil
| | | | | | | | - Maria Eugênia L. de Sá
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF Brazil
- Empresa de Pesquisa Agropecuária de Minas Gerais, Minas Gerais, MG Brazil
| | - Maria F. Grossi-de-Sa
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF Brazil
- Universidade Católica de Brasília, Brasília, DF Brazil
- Instituto Nacional de Ciência e Tecnologia – INCT, PlantStress Biotech, Embrapa, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF Brazil
| |
Collapse
|
7
|
Pundir S, Sharma R, Kumar D, Singh VK, Chaturvedi D, Kanwar RS, Röder MS, Börner A, Ganal MW, Gupta PK, Sharma S, Sharma S. QTL mapping for resistance against cereal cyst nematode (Heterodera avenae Woll.) in wheat (Triticum aestivum L.). Sci Rep 2022; 12:9586. [PMID: 35688926 PMCID: PMC9187758 DOI: 10.1038/s41598-022-12988-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022] Open
Abstract
The resistance to cereal cyst nematode (Heterodera avenae Woll.) in wheat (Triticum aestivum L.) was studied using 114 doubled haploid lines from a novel ITMI mapping population. These lines were screened for nematode infestation in a controlled environment for two years. QTL-mapping analyses were performed across two years (Y1 and Y2) as well as combining two years (CY) data. On the 114 lines that were screened, a total of 2,736 data points (genotype, batch or years, and replication combinations) were acquired. For QTL analysis, 12,093 markers (11,678 SNPs and 415 SSRs markers) were used, after filtering the genotypic data, for the QTL mapping. Composite interval mapping, using Haley-Knott regression (hk) method in R/QTL, was used for QTL analysis. In total, 19 QTLs were detected out of which 13 were novel and six were found to be colocalized or nearby to previously reported Cre genes, QTLs or MTAs for H. avenae or H. filipjevi. Nine QTLs were detected across all three groups (Y1, Y2 and CY) including a significant QTL "QCcn.ha-2D" on chromosome 2D that explains 23% of the variance. This QTL colocalized with a previously identified Cre3 locus. Novel QTL, QCcn.ha-2A, detected in the present study could be the possible unreported homeoloci to QCcn.ha-2D, QCcn.ha-2B.1 and QCcn.ha-2B.2. Six significant digenic epistatic interactions were also observed. In addition, 26 candidate genes were also identified including genes known for their involvement in PPNs (plant parasitic nematodes) resistance in different plant species. In-silico expression of putative candidate genes showed differential expression in roots during specific developmental stages. Results obtained in the present study are useful for wheat breeding to generate resistant genetic resources against H. avenae.
Collapse
Affiliation(s)
- Saksham Pundir
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, Uttar Pradesh, 250 004, India
- Department of Botany, Chaudhary Charan Singh University (CCSU), Meerut, Uttar Pradesh, 250 004, India
| | - Rajiv Sharma
- Scotland's Rural College (SRUC), Peter Wilson Building, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Deepak Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, Uttar Pradesh, 250 004, India
- Department of Botany, Chaudhary Charan Singh University (CCSU), Meerut, Uttar Pradesh, 250 004, India
| | - Vikas Kumar Singh
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, Uttar Pradesh, 250 004, India
| | - Deepti Chaturvedi
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, Uttar Pradesh, 250 004, India
| | - Rambir Singh Kanwar
- Department of Nematology, Chaudhary Charan Singh Haryana Agricultural University (CCSHAU), Hisar, Haryana, 125 004, India
| | - Marion S Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland, OT Gatersleben, Germany
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland, OT Gatersleben, Germany
| | - Martin W Ganal
- Trait Genetics GmbH, Am Schwabeplan 1b, 06466, Seeland, OT Gatersleben, Germany
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, Uttar Pradesh, 250 004, India
- Murdoch's Centre for Crop & Food Innovation, Murdoch University, Murdoch, WA 6150, Perth, Australia
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, Uttar Pradesh, 250 004, India
| | - Shiveta Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, Uttar Pradesh, 250 004, India.
| |
Collapse
|
8
|
Ojeda-Rivera JO, Ulloa M, Roberts PA, Kottapalli P, Wang C, Nájera-González HR, Payton P, Lopez-Arredondo D, Herrera-Estrella L. Root-Knot Nematode Resistance in Gossypium hirsutum Determined by a Constitutive Defense-Response Transcriptional Program Avoiding a Fitness Penalty. FRONTIERS IN PLANT SCIENCE 2022; 13:858313. [PMID: 35498643 PMCID: PMC9044970 DOI: 10.3389/fpls.2022.858313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Cotton (Gossypium spp.) is the most important renewable source of natural textile fiber and one of the most cultivated crops around the world. Plant-parasitic nematode infestations, such as the southern Root-Knot Nematode (RKN) Meloidogyne incognita, represent a threat to cotton production worldwide. Host-plant resistance is a highly effective strategy to manage RKN; however, the underlying molecular mechanisms of RKN-resistance remain largely unknown. In this study, we harness the differences in RKN-resistance between a susceptible (Acala SJ-2, SJ2), a moderately resistant (Upland Wild Mexico Jack Jones, WMJJ), and a resistant (Acala NemX) cotton entries, to perform genome-wide comparative analysis of the root transcriptional response to M. incognita infection. RNA-seq data suggest that RKN-resistance is determined by a constitutive state of defense transcriptional behavior that prevails in the roots of the NemX cultivar. Gene ontology and protein homology analyses indicate that the root transcriptional landscape in response to RKN-infection is enriched for responses related to jasmonic and salicylic acid, two key phytohormones in plant defense responses. These responses are constitutively activated in NemX and correlate with elevated levels of these two hormones while avoiding a fitness penalty. We show that the expression of cotton genes coding for disease resistance and receptor proteins linked to RKN-resistance and perception in plants, is enhanced in the roots of RKN-resistant NemX. Members of the later gene families, located in the confidence interval of a previously identified QTL associated with RKN resistance, represent promising candidates that might facilitate introduction of RKN-resistance into valuable commercial varieties of cotton. Our study provides novel insights into the molecular mechanisms that underlie RKN resistance in cotton.
Collapse
Affiliation(s)
- Jonathan Odilón Ojeda-Rivera
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Mauricio Ulloa
- USDA-ARS, PA, CSRL, Plant Stress and Germplasm Development Research, Lubbock, TX, United States
| | - Philip A. Roberts
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
| | - Pratibha Kottapalli
- USDA-ARS, PA, CSRL, Plant Stress and Germplasm Development Research, Lubbock, TX, United States
| | - Congli Wang
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
| | - Héctor-Rogelio Nájera-González
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Paxton Payton
- USDA-ARS, PA, CSRL, Plant Stress and Germplasm Development Research, Lubbock, TX, United States
| | - Damar Lopez-Arredondo
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
- Unidad de Genomica Avanzada/Langebio, Centro de Investigacion y de Estudios Avanzados, Irapuato, Mexico
| |
Collapse
|
9
|
RNA-Seq of Cyst Nematode Infestation of Potato (Solanum tuberosum L.): A Comparative Transcriptome Analysis of Resistant and Susceptible Cultivars. PLANTS 2022; 11:plants11081008. [PMID: 35448735 PMCID: PMC9025382 DOI: 10.3390/plants11081008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/02/2022]
Abstract
Potato (Solanum tuberosum L.) is an important food crop worldwide, and potato cyst nematodes (PCNs) are among the most serious pests. The identification of disease resistance genes and molecular markers for PCN infestation can aid in crop improvement research programs against PCN infestation. In the present study, we used high-throughput RNA sequencing to investigate the comprehensive resistance mechanisms induced by PCN infestation in the resistant cultivar Kufri Swarna and the susceptible cultivar Kufri Jyoti. PCN infestation induced 791 differentially expressed genes in resistant cultivar Kufri Swarna, comprising 438 upregulated and 353 downregulated genes. In susceptible cultivar Kufri Jyoti, 2225 differentially expressed genes were induced, comprising 1247 upregulated and 978 downregulated genes. We identified several disease resistance genes (KIN) and transcription factors (WRKY, HMG, and MYB) that were upregulated in resistant Kufri Swarna. The differentially expressed genes from several enriched KEGG pathways, including MAPK signaling, contributed to the disease resistance in Kufri Swarna. Functional network analysis showed that several cell wall biogenesis genes were induced in Kufri Swarna in response to infestation. This is the first study to identify underlying resistance mechanisms against PCN and host interaction in Indian potato varieties.
Collapse
|
10
|
Khoei MA, Karimi M, Karamian R, Amini S, Soorni A. Identification of the Complex Interplay Between Nematode-Related lncRNAs and Their Target Genes in Glycine max L. FRONTIERS IN PLANT SCIENCE 2021; 12:779597. [PMID: 34956274 PMCID: PMC8705754 DOI: 10.3389/fpls.2021.779597] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/08/2021] [Indexed: 05/26/2023]
Abstract
Soybean (Glycine max) is a major plant protein source and oilseed crop. However, plant-parasitic nematodes (PPNs) affect its annual yield. In the current study, in order to better understand the regulation of defense mechanism against PPNs in soybean, we investigated the role of long non-coding RNAs (lncRNAs) in response to two nematode species, Heterodera glycines (SCN: soybean cyst nematode) and Rotylenchulus reniformis (reniform). To this end, two publicly available RNA-seq data sets (SCN data set and RAD: reniform-associated data set) were employed to discover the lncRNAome profile of soybean under SCN and reniform infection, respectively. Upon identification of unannotated transcripts in these data sets, a seven-step pipeline was utilized to sieve these transcripts, which ended up in 384 and 283 potential lncRNAs in SCN data set and RAD, respectively. These transcripts were then used to predict cis and trans nematode-related targets in soybean genome. Computational prediction of target genes function, some of which were also among differentially expressed genes, revealed the involvement of putative nematode-responsive genes as well as enrichment of multiple stress responses in both data sets. Finally, 15 and six lncRNAs were proposed to be involved in microRNA-mediated regulation of gene expression in soybean in response to SNC and reniform infection, respectively. Collectively, this study provides a novel insight into the signaling and regulatory network of soybean-pathogen interactions and opens a new window for further research.
Collapse
Affiliation(s)
| | | | - Roya Karamian
- Department of Biology, Faculty of Sciences, Bu-Ali Sina University, Hamedan, Iran
| | | | - Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
11
|
Lisei-de-Sá ME, Rodrigues-Silva PL, Morgante CV, de Melo BP, Lourenço-Tessutti IT, Arraes FBM, Sousa JPA, Galbieri R, Amorim RMS, de Lins CBJ, Macedo LLP, Moreira VJ, Ferreira GF, Ribeiro TP, Fragoso RR, Silva MCM, de Almeida-Engler J, Grossi-de-Sa MF. Pyramiding dsRNAs increases phytonematode tolerance in cotton plants. PLANTA 2021; 254:121. [PMID: 34779907 DOI: 10.1007/s00425-021-03776-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Host-derived suppression of nematode essential genes decreases reproduction of Meloidogyne incognita in cotton. Root-knot nematodes (RKN) represent one of the most damaging plant-parasitic nematode genera worldwide. RNAi-mediated suppression of essential nematode genes provides a novel biotechnological strategy for the development of sustainable pest-control methods. Here, we used a Host Induced Gene Silencing (HIGS) approach by stacking dsRNA sequences into a T-DNA construct to target three essential RKN genes: cysteine protease (Mi-cpl), isocitrate lyase (Mi-icl), and splicing factor (Mi-sf), called dsMinc1, driven by the pUceS8.3 constitutive soybean promoter. Transgenic dsMinc1-T4 plants infected with Meloidogyne incognita showed a significant reduction in gall formation (57-64%) and egg masses production (58-67%), as well as in the estimated reproduction factor (60-78%), compared with the susceptible non-transgenic cultivar. Galls of the RNAi lines are smaller than the wild-type (WT) plants, whose root systems exhibited multiple well-developed root swellings. Transcript levels of the three RKN-targeted genes decreased 13- to 40-fold in nematodes from transgenic cotton galls, compared with those from control WT galls. Finally, the development of non-feeding males in transgenic plants was 2-6 times higher than in WT plants, indicating a stressful environment for nematode development after RKN gene silencing. Data strongly support that HIGS of essential RKN genes is an effective strategy to improve cotton plant tolerance. This study presents the first application of dsRNA sequences to target multiple genes to promote M. incognita tolerance in cotton without phenotypic penalty in transgenic plants.
Collapse
Affiliation(s)
- Maria E Lisei-de-Sá
- Empresa de Pesquisa Agropecuária de Minas Gerais, Uberaba, MG, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Paolo L Rodrigues-Silva
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Universidade Católica de Brasília, Brasilia, DF, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Embrapa Semi-Árido, Pretrolina, PE, Brazil
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Bruno Paes de Melo
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Fabricio B M Arraes
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - João P A Sousa
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Universidade Católica de Brasília, Brasilia, DF, Brazil
| | - Rafael Galbieri
- Instituto Matogrossense Do Algodão, Rondonopolis, MT, Brazil
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | | | | | - Leonardo L P Macedo
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Valdeir J Moreira
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Departamento de Biologia Molecular, Universidade de Brasília, Brasilia, DF, Brazil
| | | | - Thuanne P Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Rodrigo R Fragoso
- Embrapa Cerrados, Planaltina, DF, Brazil
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Maria C M Silva
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Janice de Almeida-Engler
- UMR Institut Sophia Agrobiotech INRA/CNRS/UNS, Sophia Antipolis, France
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil.
- Universidade Católica de Brasília, Brasilia, DF, Brazil.
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil.
| |
Collapse
|
12
|
Kamali S, Javadmanesh A, Stelinski LL, Kyndt T, Seifi A, Cheniany M, Zaki-Aghl M, Hosseini M, Heydarpour M, Asili J, Karimi J. Beneficial worm allies warn plants of parasite attack below-ground and reduce above-ground herbivore preference and performance. Mol Ecol 2021; 31:691-712. [PMID: 34706125 DOI: 10.1111/mec.16254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Antagonistic interactions among different functional guilds of nematodes have been recognized for quite some time, but the underlying explanatory mechanisms are unclear. We investigated responses of tomato (Solanum lycopersicum) to two functional guilds of nematodes-plant parasite (Meloidogyne javanica) and entomopathogens (Heterorhabditis bacteriophora, Steinernema feltiae below-ground, and S. carpocapsae)-as well as a leaf mining insect (Tuta absoluta) above-ground. Our results indicate that entomopathogenic nematodes (EPNs): (1) reduced root knot nematode (RKN) infestation below-ground, (2) reduced herbivore (T. absoluta) host preference and performance above-ground, and (3) induced overlapping plant defence responses by rapidly activating polyphenol oxidase and guaiacol peroxidase activity in roots, but simultaneously suppressing this activity in above-ground tissues. Concurrently, we investigated potential plant signalling mechanisms underlying these interactions using transcriptome analyses. We found that both entomopathogens and plant parasites triggered immune responses in plant roots with shared gene expression. Secondary metabolite transcripts induced in response to the two nematode functional guilds were generally overlapping and showed an analogous profile of regulation. Likewise, we show that EPNs modulate plant defence against RKN invasion, in part, by suppressing active expression of antioxidant enzymes. Inoculations of roots with EPN triggered an immune response in tomato via upregulated phenylpropanoid metabolism and synthesis of protease inhibitors in plant tissues, which may explain decreased egg laying and developmental performance exhibited by herbivores on EPN-inoculated plants. Furthermore, changes induced in the volatile organic compound-related transcriptome indicated that M. javanica and/or S. carpocapsae inoculation of plants triggered both direct and indirect defences. Our results support the hypothesis that plants "mistake" subterranean EPNs for parasites, and these otherwise beneficial worms activate a battery of plant defences associated with systemic acquired resistance and/or induced systemic resistance with concomitant antagonistic effects on temporally co-occurring subterranean plant pathogenic nematodes and terrestrial herbivores.
Collapse
Affiliation(s)
- Shokoofeh Kamali
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, University of Florida Citrus Research and Education Center, Lake Alfred, Florida, USA
| | - Tina Kyndt
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Alireza Seifi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Monireh Cheniany
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Zaki-Aghl
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mojtaba Hosseini
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahyar Heydarpour
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Karimi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
13
|
Oosterbeek M, Lozano-Torres JL, Bakker J, Goverse A. Sedentary Plant-Parasitic Nematodes Alter Auxin Homeostasis via Multiple Strategies. FRONTIERS IN PLANT SCIENCE 2021; 12:668548. [PMID: 34122488 PMCID: PMC8193132 DOI: 10.3389/fpls.2021.668548] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Sedentary endoparasites such as cyst and root-knot nematodes infect many important food crops and are major agro-economical pests worldwide. These plant-parasitic nematodes exploit endogenous molecular and physiological pathways in the roots of their host to establish unique feeding structures. These structures function as highly active transfer cells and metabolic sinks and are essential for the parasites' growth and reproduction. Plant hormones like indole-3-acetic acid (IAA) are a fundamental component in the formation of these feeding complexes. However, their underlying molecular and biochemical mechanisms are still elusive despite recent advances in the field. This review presents a comprehensive overview of known functions of various auxins in plant-parasitic nematode infection sites, based on a systematic analysis of current literature. We evaluate multiple aspects involved in auxin homeostasis in plants, including anabolism, catabolism, transport, and signalling. From these analyses, a picture emerges that plant-parasitic nematodes have evolved multiple strategies to manipulate auxin homeostasis to establish a successful parasitic relationship with their host. Additionally, there appears to be a potential role for auxins other than IAA in plant-parasitic nematode infections that might be of interest to be further elucidated.
Collapse
|