1
|
Torrance EL, Diop A, Bobay LM. Homologous recombination shapes the architecture and evolution of bacterial genomes. Nucleic Acids Res 2024:gkae1265. [PMID: 39718992 DOI: 10.1093/nar/gkae1265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/16/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024] Open
Abstract
Homologous recombination is a key evolutionary force that varies considerably across bacterial species. However, how the landscape of homologous recombination varies across genes and within individual genomes has only been studied in a few species. Here, we used Approximate Bayesian Computation to estimate the recombination rate along the genomes of 145 bacterial species. Our results show that homologous recombination varies greatly along bacterial genomes and shapes many aspects of genome architecture and evolution. The genomic landscape of recombination presents several key signatures: rates are highest near the origin of replication in most species, patterns of recombination generally appear symmetrical in both replichores (i.e. replicational halves of circular chromosomes) and most species have genomic hotspots of recombination. Furthermore, many closely related species share conserved landscapes of recombination across orthologs indicating that recombination landscapes are conserved over significant evolutionary distances. We show evidence that recombination drives the evolution of GC-content through increasing the effectiveness of selection and not through biased gene conversion, thereby contributing to an ongoing debate. Finally, we demonstrate that the rate of recombination varies across gene function and that many hotspots of recombination are associated with adaptive and mobile regions often encoding genes involved in pathogenicity.
Collapse
Affiliation(s)
- Ellis L Torrance
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
- Systems Biology Dept., Sandia National Laboratories, Livermore, CA 9455, USA
| | - Awa Diop
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Louis-Marie Bobay
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Goring AK, Hale S, Dasika P, Chen Y, Clubb RT, Loo JA. The Exoproteome and Surfaceome of Toxigenic Corynebacterium diphtheriae 1737 and Its Response to Iron Restriction and Growth on Human Hemoglobin. J Proteome Res 2024. [PMID: 39692319 DOI: 10.1021/acs.jproteome.4c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Toxin-producing Corynebacterium diphtheriae strains are the etiological agents of the severe upper respiratory disease, diphtheria. A global phylogenetic analysis revealed that biotype gravis is particularly lethal as it produces diphtheria toxin and a range of other virulence factors, particularly when it encounters low levels of iron at sites of infection. To gain insight into how it colonizes its host, we have identified iron-dependent changes in the exoproteome and surfaceome of C. diphtheriae strain 1737 using a combination of whole-cell fractionation, intact cell surface proteolysis, and quantitative proteomics. In total, we identified 1414 of the predicted 2265 proteins (62%) encoded by its reference genome. For each protein, we quantified its degree of secretion and surface exposure, revealing that exoproteases and hydrolases predominate in the exoproteome, while the surfaceome is enriched with adhesins, particularly DIP2093. Our analysis provides insight into how components in the heme-acquisition system are positioned, showing pronounced surface exposure of the strain-specific ChtA/ChtC paralogues and high secretion of the species-conserved heme-binding HtaA protein, suggesting it functions as a hemophore. Profiling the response of the exoproteome and surfaceome after microbial exposure to human hemoglobin and iron limitation reveals potential virulence factors that may be expressed at sites of infection. Data are available via ProteomeXchange with identifier PXD051674.
Collapse
|
3
|
Peng ED, Lyman LR, Schmitt MP. Identification and characterization of zinc importers in Corynebacterium diphtheriae. J Bacteriol 2024; 206:e0012424. [PMID: 38809016 PMCID: PMC11332173 DOI: 10.1128/jb.00124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Corynebacterium diphtheriae is the causative agent of diphtheria, a severe respiratory disease in humans. C. diphtheriae colonizes the human upper respiratory tract, where it acquires zinc, an essential metal required for survival in the host. While the mechanisms for zinc transport by C. diphtheriae are not well characterized, four putative zinc ABC-type transporter loci were recently identified in strain 1737: iutABCD/E (iut), znuACB (znu), nikABCD1 (nik1), and nikABCD2 (nik2). A mutant deleted for all four loci (Δ4) exhibited similar growth to that of the wild-type strain in a zinc-limited medium, suggesting there are additional zinc transporters. Two additional gene loci predicted to be associated with metal import, mntABCD (mnt) and sidAB (sid), were deleted in the Δ4 mutant to construct a new mutant designated Δ6. The C. diphtheriae Δ6 mutant exhibited significantly reduced growth under zinc limitation relative to the wild type, suggesting a deficiency in zinc acquisition. Strains retaining the iut, znu, mnt, or sid loci grew to near-wild-type levels in the absence of the other five loci, indicating that each of these transporters may be involved in zinc uptake. Plasmid complementation with cloned iut, znu, mnt, or nik1 loci also enhanced the growth of the Δ6 mutant. Quantification of intracellular zinc content by inductively coupled plasma mass spectrometry was consistent with reduced zinc uptake by Δ6 relative to the wild type and further supports a zinc uptake function for the transporters encoded by iut, znu, and mnt. This study demonstrates that C. diphtheriae zinc transport is complex and involves multiple zinc uptake systems.IMPORTANCEZinc is a critical nutrient for all forms of life, including human bacterial pathogens. Thus, the tools that bacteria use to acquire zinc from host sources are crucial for pathogenesis. While potential candidates for zinc importers have been identified in Corynebacterium diphtheriae from gene expression studies, to date, no study has clearly demonstrated this function for any of the putative transporters. We show that C. diphtheriae encodes at least six loci associated with zinc import, underscoring the extent of redundancy for zinc acquisition. Furthermore, we provide evidence that a previously studied manganese-regulated importer can also function in zinc import. This study builds upon our knowledge of bacterial zinc transport mechanisms and identifies potential targets for future diphtheria vaccine candidates.
Collapse
Affiliation(s)
- Eric D. Peng
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lindsey R. Lyman
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael P. Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
4
|
Torrance EL, Diop A, Bobay LM. Homologous Recombination Shapes the Architecture and Evolution of Bacterial Genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596828. [PMID: 38895235 PMCID: PMC11185547 DOI: 10.1101/2024.05.31.596828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Homologous recombination is a key evolutionary force that varies considerably across bacterial species. However, how the landscape of homologous recombination varies across genes and within individual genomes has only been studied in a few species. Here, we used Approximate Bayesian Computation to estimate the recombination rate along the genomes of 145 bacterial species. Our results show that homologous recombination varies greatly along bacterial genomes and shapes many aspects of genome architecture and evolution. The genomic landscape of recombination presents several key signatures: rates are highest near the origin of replication in most species, patterns of recombination generally appear symmetrical in both replichores (i.e. replicational halves of circular chromosomes) and most species have genomic hotpots of recombination. Furthermore, many closely related species share conserved landscapes of recombination across orthologs indicating that recombination landscapes are conserved over significant evolutionary distances. We show evidence that recombination drives the evolution of GC-content through increasing the effectiveness of selection and not through biased gene conversion, thereby contributing to an ongoing debate. Finally, we demonstrate that the rate of recombination varies across gene function and that many hotspots of recombination are associated with adaptive and mobile regions often encoding genes involved in pathogenicity.
Collapse
Affiliation(s)
- Ellis L Torrance
- Dept. of Biology, University of North Carolina Greensboro, Greensboro, NC 27412
- Systems Biology Dept., Sandia National Laboratories, Livermore, CA 94551
| | - Awa Diop
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| | - Louis-Marie Bobay
- Dept. of Biology, University of North Carolina Greensboro, Greensboro, NC 27412
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
5
|
Gu Y, Liu Y, Mao W, Peng Y, Han X, Jin H, Xu J, Chang L, Hou Y, Shen X, Liu X, Yang Y. Functional versatility of Zur in metal homeostasis, motility, biofilm formation, and stress resistance in Yersinia pseudotuberculosis. Microbiol Spectr 2024; 12:e0375623. [PMID: 38534119 PMCID: PMC11064496 DOI: 10.1128/spectrum.03756-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Zur (zinc uptake regulator) is a significant member of the Fur (ferric uptake regulator) superfamily, which is widely distributed in bacteria. Zur plays crucial roles in zinc homeostasis and influences cell development and environmental adaptation in various species. Yersinia pseudotuberculosis is a Gram-negative enteric that pathogen usually serves as a model organism in pathogenicity studies. The regulatory effects of Zur on the zinc transporter ZnuABC and the protein secretion system T6SS have been documented in Y. pseudotuberculosis. In this study, a comparative transcriptomics analysis between a ∆zur mutant and the wild-type (WT) strain of Y. pseudotuberculosis was conducted using RNA-seq. This analysis revealed global regulation by Zur across multiple functional categories, including membrane transport, cell motility, and molecular and energy metabolism. Additionally, Zur mediates the homeostasis not only of zinc but also ferric and magnesium in vivo. There was a notable decrease in 35 flagellar biosynthesis and assembly-related genes, leading to reduced swimming motility in the ∆zur mutant strain. Furthermore, Zur upregulated multiple simple sugar and oligopeptide transport system genes by directly binding to their promoters. The absence of Zur inhibited biofilm formation as well as reduced resistance to chloramphenicol and acidic stress. This study illustrates the comprehensive regulatory functions of Zur, emphasizing its importance in stress resistance and pathogenicity in Y. pseudotuberculosis. IMPORTANCE Bacteria encounter diverse stresses in the environment and possess essential regulators to modulate the expression of genes in responding to the stresses for better fitness and survival. Zur (zinc uptake regulator) plays a vital role in zinc homeostasis. Studies of Zur from multiple species reviewed that it influences cell development, stress resistance, and virulence of bacteria. Y. pseudotuberculosis is an enteric pathogen that serves a model organism in the study of pathogenicity, virulence factors, and mechanism of environmental adaptation. In this study, transcriptomics analysis of Zur's regulons was conducted in Y. pseudotuberculosis. The functions of Zur as a global regulator in metal homeostasis, motility, nutrient acquisition, glycan metabolism, and nucleotide metabolism, in turn, increasing the biofilm formation, stress resistance, and virulence were reviewed. The importance of Zur in environmental adaptation and pathogenicity of Y. pseudotuberculosis was emphasized.
Collapse
Affiliation(s)
- Yanchao Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yongde Liu
- Qingyang Longfeng Sponge City Construction Management and Operation Co., Ltd, Qingyang, China
| | - Wei Mao
- Qingyang Longfeng Sponge City Construction Management and Operation Co., Ltd, Qingyang, China
| | - Ying Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiaoru Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Han Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jingling Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Liyang Chang
- College of Enology, Northwest A&F University, Yangling, China
| | - Yixin Hou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xingyu Liu
- General Research Institute for Nonferrous Metals, Beijing, China
| | - Yantao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Choi WW, Jeong H, Kim Y, Lee HS. Gene nceA encodes a Ni/Co-sensing transcription factor to regulate metal efflux in Corynebacterium glutamicum. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6865361. [PMID: 36460048 DOI: 10.1093/mtomcs/mfac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
The function of Corynebacterium glutamicum open reading frame (ORF) NCgl2684 (named nceA in this study), which was annotated to encode a metalloregulator, was assessed using physiological, genetic, and biochemical approaches. Cells with deleted-nceA (ΔnceA) showed a resistant phenotype to NiSO4 and CoSO4 and showed faster growth in minimal medium containing 20 μM NiSO4 or 10 μM CoSO4 than both the wild-type and nceA-overexpressing (P180-nceA) cells. In the ΔnceA strain, the transcription of the downstream-located ORF NCgl2685 (nceB), annotated to encode efflux protein, was increased approximately 4-fold, whereas gene transcription decreased down to 30% level in the P180-nceA strain. The transcriptions of the nceA and nceB genes were stimulated, even when as little as 5 nM NiSO4 was added to the growth medium. Protein NceA was able to bind DNA comprising the promoter region (from -14 to + 18) of the nceA--nceB operon. The protein-DNA interaction was abolished in the presence of 20 μM NiSO4, 50 μM CoSO4, or 50 μM CdSO4. Although manganese induced the transcription of the nceA and nceB genes, it failed to interrupt protein-DNA interaction. Simultaneously, the P180-nceA cells showed increased sensitivity to oxidants such as menadione, hydrogen peroxide, and cumene hydroperoxide, but not diamide. Collectively, our data show that NceA is a nickel- and cobalt-sensing transcriptional regulator that controls the transcription of the probable efflux protein-encoding nceB. The genes are able to suppress intracellular levels of nickel to prevent reactions, which can cause oxidative damage to cellular components.
Collapse
Affiliation(s)
- Won-Woo Choi
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.,Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| | - Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, Chungbuk 27136, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.,Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
7
|
Analysis of the Manganese and MntR Regulon in Corynebacterium diphtheriae. J Bacteriol 2021; 203:e0027421. [PMID: 34370555 DOI: 10.1128/jb.00274-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium diphtheriae is the causative agent of a severe respiratory disease in humans. The bacterial systems required for infection are poorly understood, but the acquisition of metals such as manganese (Mn) is likely critical for host colonization. MntR is a Mn-dependent transcriptional regulator in C. diphtheriae that represses the expression of the mntABCD genes, which encode a putative ABC metal transporter. However, other targets of Mn and MntR regulation in C. diphtheriae have not been identified. In this study, we use comparisons between the gene expression profiles of wild-type C. diphtheriae strain 1737 grown without or with Mn supplementation and comparisons of gene expression between wild-type and an mntR deletion mutant to characterize the C. diphtheriae Mn and MntR regulon. MntR was observed to both repress and induce various target genes in a Mn-dependent manner. Genes induced by MntR include the Mn-superoxide dismutase, sodA, and the putative ABC transporter locus, iutABCD. DNA binding studies showed that MntR interacts with the promoter regions for several genes identified in the expression study, and a 17-bp consensus MntR DNA binding site was identified. We found that an mntR mutant displayed increased sensitivity to Mn and cadmium that could be alleviated by the additional deletion of the mntABCD transport locus, providing evidence that the MntABCD transporter functions as a Mn uptake system in C. diphtheriae. The findings in this study further our understanding of metal uptake systems and global metal regulatory networks in this important human pathogen. Importance Mechanisms for metal scavenging are critical to the survival and success of bacterial pathogens, including Corynebacterium diphtheriae. Metal import systems in pathogenic bacteria have been studied as possible vaccine components due to high conservation, critical functionality, and surface localization. In this study, we expand our understanding of the genes controlled by the global manganese regulator, MntR. We determined a role for the MntABCD transporter in manganese import using evidence from manganese and cadmium toxicity assays. Understanding the nutritional requirements of C. diphtheriae and the tools used to acquire essential metals will aid in the development of future vaccines.
Collapse
|
8
|
Kandari D, Joshi H, Tanwar N, Munde M, Bhatnagar R. Delineation of the Residues of Bacillus anthracis Zinc Uptake Regulator Protein Directly Involved in Its Interaction with Cognate DNA. Biol Trace Elem Res 2021; 199:3147-3158. [PMID: 33052530 DOI: 10.1007/s12011-020-02427-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Zinc uptake regulator (Zur) is a negative transcriptional regulator of bacteria that belongs to the FUR superfamily of proteins and regulates zinc (Zn) homeostasis under extreme Zn conditions. The Zur protein of Bacillus anthracis (BaZur) was though characterized previously, but the residues of this transcriptional regulator, crucial for binding to the consensus Zur box in the cognate DNA, remain unexplored. In this study, we reveal the essential residues of the protein that govern the specific interaction with the cognate DNA, through mutational and binding studies. In silico predicted model of the BaZur protein with the promoter region of one of the regulon candidates was utilized to identify specific residues of the N-terminal domain (NTD), constituting the DNA-binding recognition helix. Our results suggest that two phenylalanine residues, a non-polar aliphatic leucine and a positively charged arginine residue of NTD, are predominantly involved in DNA binding of BaZur. Among these, the arginine residue (Arg58) is conserved among all the Zur proteins and the two Phe residues, namely Phe53 and Phe63, are conserved in the Zur proteins of Staphylococcus aureus and Listeria monocytogenes. Taken together, the current study represents an in-depth investigation into the key DNA-binding residues involved in the BaZur-DNA interaction.
Collapse
Affiliation(s)
- Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Hemant Joshi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Neetu Tanwar
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manoj Munde
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
- Banaras Hindu University, Banaras, Uttar Pradesh, 221005, India.
| |
Collapse
|
9
|
Sevilla E, Bes MT, Peleato ML, Fillat MF. Fur-like proteins: Beyond the ferric uptake regulator (Fur) paralog. Arch Biochem Biophys 2021; 701:108770. [PMID: 33524404 DOI: 10.1016/j.abb.2021.108770] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
Proteins belonging to the FUR (ferric uptake regulator) family are the cornerstone of metalloregulation in most prokaryotes. Although numerous reviews have been devoted to these proteins, these reports are mainly focused on the Fur paralog that gives name to the family. In the last years, the increasing knowledge on the other, less ubiquitous members of this family has evidenced their importance in bacterial metabolism. As the Fur paralog, the major regulator of iron homeostasis, Zur, Irr, BosR and PerR are tightly related to stress defenses and host-pathogen interaction being in many cases essential for virulence. Furthermore, the Nur and Mur paralogs largely contribute to control nickel and manganese homeostasis, which are cofactors of pivotal proteins for host colonization and bacterial redox homeostasis. The present review highlights the main features of FUR proteins that differ to the canonical Fur paralog either in the coregulatory metal, such as Zur, Nur and Mur, or in the action mechanism to control target genes, such as PerR, Irr and BosR.
Collapse
Affiliation(s)
- Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - M Teresa Bes
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - M Luisa Peleato
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - María F Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|