1
|
Ye J, Wang Y, Li Q, Hussain S, Chen S, Zhou X, Hou S, Feng Y. Phagocytosis in Marine Coccolithophore Gephyrocapsa huxleyi: Comparison between Calcified and Non-Calcified Strains. BIOLOGY 2024; 13:310. [PMID: 38785792 PMCID: PMC11117637 DOI: 10.3390/biology13050310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Coccolithophores play a significant role in marine calcium carbonate production and carbon cycles, attributing to their unique feature of producing calcareous plates, coccoliths. Coccolithophores also possess a haplo-diplontic life cycle, presenting distinct morphology types and calcification states. However, differences in nutrient acquisition strategies and mixotrophic behaviors of the two life phases remain unclear. In this study, we conducted a series of phagocytosis experiments of calcified diploid and non-calcified haploid strains of coccolithophore Gephyrocapsa huxleyi under light and dark conditions. The phagocytosis capability of each strain was examined based on characteristic fluorescent signals from ingested beads using flow cytometry and fluorescence microscopy. The results show a significantly higher phagocytosis percentage on fluorescent beads in the bacterial prey surrogates of the non-calcified haploid Gephyrocapsa huxleyi strain, than the calcified diploid strain with or without light. In addition, the non-calcified diploid cells seemingly to presented a much higher phagocytosis percentage in darkness than under light. The differential phagocytosis capacities between the calcified diploid and non-calcified haploid Gephyrocapsa huxleyi strains indicate potential distinct nutritional strategies at different coccolithophore life and calcifying stages, which may further shed light on the potential strategies that coccolithophore possesses in unfavorable environments such as twilight zones and the expanding coccolithophore niches in the natural marine environment under the climate change scenario.
Collapse
Affiliation(s)
- Jiayang Ye
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China; (J.Y.); (Q.L.)
- Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China;
- Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China
| | - Ying Wang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China; (J.Y.); (Q.L.)
| | - Qian Li
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China; (J.Y.); (Q.L.)
| | - Sarfraz Hussain
- Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Songze Chen
- Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China
| | - Xunying Zhou
- Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shengwei Hou
- Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China;
- Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China
- Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanyuan Feng
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China; (J.Y.); (Q.L.)
- Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China;
- Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China
| |
Collapse
|
2
|
Skeffington A, Fischer A, Sviben S, Brzezinka M, Górka M, Bertinetti L, Woehle C, Huettel B, Graf A, Scheffel A. A joint proteomic and genomic investigation provides insights into the mechanism of calcification in coccolithophores. Nat Commun 2023; 14:3749. [PMID: 37353496 PMCID: PMC10290126 DOI: 10.1038/s41467-023-39336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
Coccolithophores are globally abundant, calcifying microalgae that have profound effects on marine biogeochemical cycles, the climate, and life in the oceans. They are characterized by a cell wall of CaCO3 scales called coccoliths, which may contribute to their ecological success. The intricate morphologies of coccoliths are of interest for biomimetic materials synthesis. Despite the global impact of coccolithophore calcification, we know little about the molecular machinery underpinning coccolithophore biology. Working on the model Emiliania huxleyi, a globally distributed bloom-former, we deploy a range of proteomic strategies to identify coccolithogenesis-related proteins. These analyses are supported by a new genome, with gene models derived from long-read transcriptome sequencing, which revealed many novel proteins specific to the calcifying haptophytes. Our experiments provide insights into proteins involved in various aspects of coccolithogenesis. Our improved genome, complemented with transcriptomic and proteomic data, constitutes a new resource for investigating fundamental aspects of coccolithophore biology.
Collapse
Affiliation(s)
- Alastair Skeffington
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Axel Fischer
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Sanja Sviben
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Magdalena Brzezinka
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Michał Górka
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Luca Bertinetti
- Max Planck Institute of Colloids and Interfaces, Potsdam-Golm, 14476, Germany
| | - Christian Woehle
- Max Planck Institute for Plant Breeding Research, Max Planck-Genome-Centre Cologne, Cologne, 50829, Germany
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding Research, Max Planck-Genome-Centre Cologne, Cologne, 50829, Germany
| | - Alexander Graf
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - André Scheffel
- Technische Universität Dresden, Faculty of Biology, 01307, Dresden, Germany.
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany.
| |
Collapse
|
3
|
Resolving the microalgal gene landscape at the strain level: A novel hybrid transcriptome of Emiliania huxleyi CCMP3266. Appl Environ Microbiol 2021; 88:e0141821. [PMID: 34757817 DOI: 10.1128/aem.01418-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microalgae are key ecological players with a complex evolutionary history. Genomic diversity, in addition to limited availability of high-quality genomes, challenge studies that aim to elucidate molecular mechanisms underlying microalgal ecophysiology. Here, we present a novel and comprehensive transcriptomic hybrid approach to generate a reference for genetic analyses, and resolve the microalgal gene landscape at the strain level. The approach is demonstrated for a strain of the coccolithophore microalga Emiliania huxleyi, which is a species complex with considerable genome variability. The investigated strain is commonly studied as a model for algal-bacterial interactions, and was therefore sequenced in the presence of bacteria to elicit the expression of interaction-relevant genes. We applied complementary PacBio Iso-Seq full-length cDNA, and poly(A)-independent Illumina total RNA sequencing, which resulted in a de novo assembled, near complete hybrid transcriptome. In particular, hybrid sequencing improved the reconstruction of long transcripts and increased the recovery of full-length transcript isoforms. To use the resulting hybrid transcriptome as a reference for genetic analyses, we demonstrate a method that collapses the transcriptome into a genome-like dataset, termed "synthetic genome" (sGenome). We used the sGenome as a reference to visually confirm the robustness of the CCMP3266 gene assembly, to conduct differential gene expression analysis, and to characterize novel E. huxleyi genes. The newly-identified genes contribute to our understanding of E. huxleyi genome diversification, and are predicted to play a role in microbial interactions. Our transcriptomic toolkit can be implemented in various microalgae to facilitate mechanistic studies on microalgal diversity and ecology. Importance Microalgae are key players in the ecology and biogeochemistry of our oceans. Efforts to implement genomic and transcriptomic tools in laboratory studies involving microalgae suffer from the lack of published genomes. In the case of coccolithophore microalgae, the problem has long been recognized; the model species Emiliania huxleyi is a species complex with genomes composed of a core, and a large variable portion. To study the role of the variable portion in niche adaptation, and specifically in microbial interactions, strain-specific genetic information is required. Here we present a novel transcriptomic hybrid approach, and generated strain-specific genome-like information. We demonstrate our approach on an E. huxleyi strain that is co-cultivated with bacteria. By constructing a "synthetic genome", we generated comprehensive gene annotations that enabled accurate analyses of gene expression patterns. Importantly, we unveiled novel genes in the variable portion of E. huxleyi that play putative roles in microbial interactions.
Collapse
|
4
|
Schomaker RA, Dudycha JL. De novo transcriptome assembly of the green alga Ankistrodesmus falcatus. PLoS One 2021; 16:e0251668. [PMID: 33989339 PMCID: PMC8121315 DOI: 10.1371/journal.pone.0251668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
Ankistrodesmus falcatus is a globally distributed freshwater chlorophyte that is a candidate for biofuel production, is used to study the effects of toxins on aquatic communities, and is used as food in zooplankton research. Each of these research fields is transitioning to genomic tools. We created a reference transcriptome for of A. falcatus using NextGen sequencing and de novo assembly methods including Trinity, Velvet-Oases, and EvidentialGene. The assembled transcriptome has a total of 17,997 contigs, an N50 value of 2,462, and a GC content of 64.8%. BUSCO analysis recovered 83.3% of total chlorophyte BUSCOs and 82.5% of the eukaryotic BUSCOs. A portion (7.9%) of these supposedly single-copy genes were found to have transcriptionally active, distinct duplicates. We annotated the assembly using the dammit annotation pipeline, resulting in putative functional annotation for 68.89% of the assembly. Using available rbcL sequences from 16 strains (10 species) of Ankistrodesmus, we constructed a neighbor-joining phylogeny to illustrate genetic distances of our A. falcatus strain to other members of the genus. This assembly will be valuable for researchers seeking to identify Ankistrodesmus sequences in metatranscriptomic and metagenomic field studies and in experiments where separating expression responses of zooplankton and their algal food sources through bioinformatics is important.
Collapse
Affiliation(s)
- Rachel A Schomaker
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States of America
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States of America
| |
Collapse
|
5
|
Jeong SY, Choi WH, Jeon SG, Lee S, Park JM, Park M, Lee H, Lew H, Yoo J. Establishment of functional epithelial organoids from human lacrimal glands. Stem Cell Res Ther 2021; 12:247. [PMID: 33883032 PMCID: PMC8059179 DOI: 10.1186/s13287-021-02133-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/01/2021] [Indexed: 11/29/2022] Open
Abstract
Background Tear deficiency due to lacrimal gland (LG) dysfunction is one of the major causes of dry eye disease (DED). Therefore, LG stem cell-based therapies have been extensively reported to regenerate injured lacrimal tissue; however, the number of stem cells in the LG tissue is low, and 2D long-term cultivation reduces the differentiation capacity of stem cells. Nevertheless, 3D LG organoids could be an alternative for a DED therapy because it is capable of prolonged growth while maintaining the characteristics of the LG tissue. Here, we report the development of LG organoids and their application as cell therapeutics. Methods Digested cells from human LG tissue were mixed with Matrigel and cultured in five different media modified from human prostate/salivary organoid culture media. After organoid formation, the growth, specific marker expression, and histological characteristics were analyzed to authenticate the formation of LG organoids. The secretory function of LG organoids was confirmed through calcium influx or proteomics analysis after pilocarpine treatment. To explore the curability of the developed organoids, mouse-derived LG organoids were fabricated and transplanted into the lacrimal tissue of a mouse model of DED. Results The histological features and specific marker expression of LG organoids were similar to those of normal LG tissue. In the pilocarpine-treated LG organoid, levels of internal Ca2+ ions and β-hexosaminidase, a lysosomal protein in tear fluid, were increased. In addition, the secreted proteins from pilocarpine-treated lacrimal organoids were identified through proteomics. More than 70% of the identified proteins were proven to exosome through gene ontology analysis. These results indicate that our developed organoid was pilocarpine reactive, demonstrating the function of LG. Additionally, we developed LG organoids from patients with Sjogren’s syndrome patients (SS) and confirmed that their histological features were similar to those of SS-derived LG tissue. Finally, we confirmed that the mouse LG organoids were well engrafted in the lacrimal tissue two weeks after transplantation. Conclusion This study demonstrates that the established LG organoids resemble the characteristics of normal LG tissue and may be used as a therapy for patients with DED. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02133-y.
Collapse
Affiliation(s)
- Sang Yun Jeong
- Department of Microbiology and CHA Organoid Research Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Woo Hee Choi
- Department of Microbiology and CHA Organoid Research Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.,ORGANOIDSCIENCES, Ltd., Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Seong Gyeong Jeon
- Department of Microbiology and CHA Organoid Research Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Sookon Lee
- Department of Rheumatology, Bundang CHA Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Jong-Moon Park
- Department of Pharmacology, Gacheon University, Incheon, Gyeonggi-do, Republic of Korea
| | - Mira Park
- Department of Ophthalmology, Bundang CHA Medical Center, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Hookeun Lee
- Department of Pharmacology, Gacheon University, Incheon, Gyeonggi-do, Republic of Korea
| | - Helen Lew
- Department of Ophthalmology, Bundang CHA Medical Center, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| | - Jongman Yoo
- Department of Microbiology and CHA Organoid Research Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea. .,ORGANOIDSCIENCES, Ltd., Seongnam, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
6
|
Discovery of Post-Translational Modifications in Emiliania huxleyi. Molecules 2021; 26:molecules26072027. [PMID: 33918234 PMCID: PMC8038017 DOI: 10.3390/molecules26072027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
Emiliania huxleyi is a cosmopolitan coccolithophore that plays an essential role in global carbon and sulfur cycling, and contributes to marine cloud formation and climate regulation. Previously, the proteomic profile of Emiliania huxleyi was investigated using a three-dimensional separation strategy combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The current study reuses the MS/MS spectra obtained, for the global discovery of post-translational modifications (PTMs) in this species without specific enrichment methods. Twenty-five different PTM types were examined using Trans-Proteomic Pipeline (Comet and PeptideProphet). Overall, 13,483 PTMs were identified in 7421 proteins. Methylation was the most frequent PTM with more than 2800 modified sites, and lysine was the most frequently modified amino acid with more than 4000 PTMs. The number of proteins identified increased by 22.5% to 18,780 after performing the PTM search. Compared to intact peptides, the intensities of some modified peptides were superior or equivalent. The intensities of some proteins increased dramatically after the PTM search. Gene ontology analysis revealed that protein persulfidation was related to photosynthesis in Emiliania huxleyi. Additionally, various membrane proteins were found to be phosphorylated. Thus, our global PTM discovery platform provides an overview of PTMs in the species and prompts further studies to uncover their biological functions. The combination of a three-dimensional separation method with global PTM search is a promising approach for the identification and discovery of PTMs in other species.
Collapse
|
7
|
Koh K, Park M, Bae ES, Duong VA, Park JM, Lee H, Lew H. UBA2 activates Wnt/β-catenin signaling pathway during protection of R28 retinal precursor cells from hypoxia by extracellular vesicles derived from placental mesenchymal stem cells. Stem Cell Res Ther 2020; 11:428. [PMID: 33008487 PMCID: PMC7532108 DOI: 10.1186/s13287-020-01943-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023] Open
Abstract
Background Stem cell transplantation has been proposed as an alternative treatment for intractable optic nerve disorders characterized by irrecoverable loss of cells. Mesenchymal stem cells, with varying tissue regeneration and recovery capabilities, are being considered for potential cell therapies. To overcome the limitations of cell therapy, we isolated exosomes from human placenta-derived mesenchymal stem cells (hPMSCs) and investigated their therapeutic effects in R28 cells (retinal precursor cells) exposed to CoCl2. Method After 9 h of exposure to CoCl2, the hypoxic damaged R28 cells were divided into the non-treatment group (CoCl2 + R28 cells) and treatment group (CoCl2 + R28 cells treated with exosome). Immunoblot analysis was performed for Pcna, Hif-1α, Vegf, Vimentin, Thy-1, Gap43, Ermn, Neuroflament, Wnt3a, β-catenin, phospo-GSK3β, Lef-1, UBA2, Skp1, βTrcp, and ubiquitin. The proteomes of each group were analyzed by liquid chromatography/tandem mass (LC-MS/MS) spectrometry. Differentially expressed proteins (DEPs) were detected by label-free quantification, and the interactions of the proteins were examined through signal transduction pathway and gene ontology analysis. Result We observed that exosome could significantly recover proliferation damaged by CoCl2 treatment. In addition, the treatment group presented the decreased expression of Hif-1α protein (P < 0.05) and increased expression of proliferation marker, Pcna, and nerve regeneration-related factors such as Vimentin, Thy-1, and Neuroflament (P < 0.05) compared with the non-treatment group. In total, 200 DEPs were identified in the non-treatment group and treatment group (fold change ≥ 2, p < 0.05). Catenin and ubiquitin systems (UBA2, UBE2E3, UBE2I) were found in both the DEP lists of downregulated proteins from the non-treatment group and upregulated proteins from the treatment group. The mRNA expressions of ubiquitin systems were significantly decreased under hypoxic conditions. Moreover, UBA2 and Wnt/β-catenin protein were associated with the rescue of the hypoxic damaged R28 cells. Using a siRNA system, we could find it out that hPMSC exosomes could not repair altered expressions of target proteins by CoCl2 in lacking UBA2 R28 cells. Conclusion This study reported that hypoxic damaged expression of regeneration markers in R28 cells was significantly recovered by hPMSC exosomes. We could also demonstrate that UBA2 played a key role in activating the Wnt/β-catenin signaling pathway during protection of hypoxic damaged R28 cells, induced by hPMSC exosomes.
Collapse
Affiliation(s)
- Kyungmin Koh
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.,Department of Ophthalmology, Kim's Eye Hospital, Konyang University College of Medicine, Seoul, Republic of Korea
| | - Mira Park
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Eun Soo Bae
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Van-An Duong
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Jong-Moon Park
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hookeun Lee
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Helen Lew
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
8
|
Nam O, Suzuki I, Shiraiwa Y, Jin E. Association of Phosphatidylinositol-Specific Phospholipase C with Calcium-Induced Biomineralization in the Coccolithophore Emiliania huxleyi. Microorganisms 2020; 8:E1389. [PMID: 32927844 PMCID: PMC7563939 DOI: 10.3390/microorganisms8091389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022] Open
Abstract
Biomineralization by calcifying microalgae is a precisely controlled intracellular calcification process that produces delicate calcite scales (or coccoliths) in the coccolithophore Emiliania huxleyi (Haptophycea). Despite its importance in biogeochemical cycles and the marine environment globally, the underlying molecular mechanism of intracellular coccolith formation, which requires calcium, bicarbonate, and coccolith-polysaccharides, remains unclear. In E. huxleyi CCMP 371, we demonstrated that reducing the calcium concentration from 10 (ambient seawater) to 0.1 mM strongly restricted coccolith production, which was then recovered by adding 10 mM calcium, irrespective of inorganic phosphate conditions, indicating that coccolith production could be finely controlled by the calcium supply. Using this strain, we investigated the expression of differentially expressed genes (DEGs) to observe the cellular events induced by changes in calcium concentrations. Intriguingly, DEG analysis revealed that the phosphatidylinositol-specific phospholipase C (PI-PLC) gene was upregulated and coccolith production by cells was blocked by the PI-PLC inhibitor U73122 under conditions closely associated with calcium-induced calcification. These findings imply that PI-PLC plays an important role in the biomineralization process of the coccolithophore E. huxleyi.
Collapse
Affiliation(s)
- Onyou Nam
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea;
| | - Iwane Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; (I.S.); (Y.S.)
| | - Yoshihiro Shiraiwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; (I.S.); (Y.S.)
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea;
| |
Collapse
|
9
|
Grasso G, Zane D, Dragone R. Microbial Nanotechnology: Challenges and Prospects for Green Biocatalytic Synthesis of Nanoscale Materials for Sensoristic and Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E11. [PMID: 31861471 PMCID: PMC7023511 DOI: 10.3390/nano10010011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023]
Abstract
Nanomaterials are increasingly being used in new products and devices with a great impact on different fields from sensoristics to biomedicine. Biosynthesis of nanomaterials by microorganisms is recently attracting interest as a new, exciting approach towards the development of 'greener' nanomanufacturing compared to traditional chemical and physical approaches. This review provides an insight about microbial biosynthesis of nanomaterials by bacteria, yeast, molds, and microalgae for the manufacturing of sensoristic devices and therapeutic/diagnostic applications. The last ten-year literature was selected, focusing on scientific works where aspects like biosynthesis features, characterization, and applications have been described. The knowledge, challenges, and potentiality of microbial-mediated biosynthesis was also described. Bacteria and microalgae are the main microorganism used for nanobiosynthesis, principally for biomedical applications. Some bacteria and microalgae have showed the ability to synthetize unique nanostructures: bacterial nanocellulose, exopolysaccharides, bacterial nanowires, and biomineralized nanoscale materials (magnetosomes, frustules, and coccoliths). Yeasts and molds are characterized by extracellular synthesis, advantageous for possible reuse of cell cultures and reduced purification processes of nanomaterials. The intrinsic variability of the microbiological systems requires a greater protocols standardization to obtain nanomaterials with increasingly uniform and reproducible chemical-physical characteristics. A deeper knowledge about biosynthetic pathways and the opportunities from genetic engineering are stimulating the research towards a breakthrough development of microbial-based nanosynthesis for the future scaling-up and possible industrial exploitation of these promising 'nanofactories'.
Collapse
Affiliation(s)
- Gerardo Grasso
- Consiglio Nazionale delle Ricerche—Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Chimica, ‘Sapienza’ Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy (R.D.)
| | | | | |
Collapse
|