1
|
Kang H, Feng J, Peng Y, Liu Y, Yang Y, Wu Y, Huang J, Jie Y, Chen B, He Y. Human mesenchymal stem cells derived from adipose tissue showed a more robust effect than those from the umbilical cord in promoting corneal graft survival by suppressing lymphangiogenesis. Stem Cell Res Ther 2023; 14:328. [PMID: 37957770 PMCID: PMC10644560 DOI: 10.1186/s13287-023-03559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have shown promising potential in allograft survival. However, few reports have focused on comparing the immunosuppressive capacity of MSCs from different sources and administered via different routes in inhibiting transplant rejection. Moreover, virtually nothing is known about the role of MSCs in the regulation of graft neovascularization and lymphangiogenesis. In this study, we compared the efficacy of human adipose MSCs (hAD-MSCs) and human umbilical cord MSCs (hUC-MSCs) in vitro and in corneal transplantation models to explore the underlying molecular mechanisms and provide a powerful strategy for future clinical applications. METHODS hAD-MSCs and hUC-MSCs were generated, and their self-renewal and multi-differentiation abilities were evaluated. The inhibitory effect of human MSCs (hMSCs) was examined by T-cell proliferation assays with or without transwell in vitro. Two MSCs from different sources were separately adoptively transferred in mice corneal transplantation (5 × 105 or 1 × 106/mouse) via topical subconjunctival or intravenous (IV) routes. Allograft survival was evaluated every other day, and angiogenesis and lymphomagenesis were quantitatively analyzed by immunofluorescence staining. The RNA expression profiles of hMSCs were revealed by RNA sequencing (RNA-seq) and verified by quantitative real-time PCR (qRT‒PCR), western blotting or ELISA. The function of the differentially expressed gene FAS was verified by a T-cell apoptosis assay. RESULTS hAD-MSCs induced stronger immunosuppression in vitro than hUC-MSCs. The inhibitory effect of hUC-MSCs but not hAD-MSCs was mediated by cell-cell contact-dependent mechanisms. Systemic administration of a lower dose of hAD-MSCs showed better performance in prolonging corneal allograft survival than hUC-MSCs, while subconjunctival administration of hMSCs was safer and further prolonged corneal allograft survival. Both types of hMSCs could inhibit corneal neovascularization, while hAD-MSCs showed greater superiority in suppressing graft lymphangiogenesis. RNA-seq analysis and confirmation experiments revealed the superior performance of hAD-MSCs in allografts based on the lower expression of vascular endothelial growth factor C (VEGF-C) and higher expression of FAS. CONCLUSIONS The remarkable inhibitory effects on angiogenesis/lymphangiogenesis and immunological transplantation effects support the development of hAD-MSCs as a cell therapy against corneal transplant rejection. Topical administration of hMSCs was a safer and more effective route for application than systemic administration.
Collapse
Affiliation(s)
- Huanmin Kang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Jianing Feng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
- Shanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, China
| | - Yingqian Peng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Yingyi Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Yalei Yang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Ying Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Jian Huang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Ying Jie
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Yan He
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Single-Cell RNA sequencing highlights the regulatory role of T cell marker genes Ctla4, Ccl5 and Tcf7 in corneal allograft rejection of mouse model. Int Immunopharmacol 2023; 117:109911. [PMID: 37012887 DOI: 10.1016/j.intimp.2023.109911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND A mouse corneal allograft model was induced and single-cell RNA sequencing (scRNA-seq) data of corneal tissues and T cells were analyzed to reveal a T cell-mediated mechanism for corneal allograft rejection in mice. METHODS Corneal tissue samples from a mouse model of corneal allograft were collected for scRNA-seq analysis, followed by quality control, dimensionality reduction, cluster analysis and enrichment analysis. A large number of highly variable genes were identified in mice with corneal allograft. Significant difference existed in immune T cells, especially in CD4 + T cells. RESULTS It was found that T cell marker genes Ctla4, Ccl5, Tcf7, Lgals1, and Itgb1 may play key roles in the corneal allograft rejection. Mice with allograft rejection showed a significant increase in the proportion of CD4 + T cells in the corneal tissues. Besides, Ccl5 and Tcf7 expression was increased in mice with allograft rejection and positively linked to the proportion of CD4 + T cells. Whereas, Ctla4 expression was downregulated and negatively associated with the proportion of CD4 + T cells. CONCLUSION Collectively, Ctla4, Ccl5 and Tcf7 may participate in the rejection of corneal allograft in mice by affecting CD4 + T cell activation.
Collapse
|
3
|
Mesenchymal stromal cells for corneal transplantation: Literature review and suggestions for successful clinical trials. Ocul Surf 2021; 20:185-194. [PMID: 33607323 PMCID: PMC9878990 DOI: 10.1016/j.jtos.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/28/2023]
Abstract
Corneal transplantation is a routine procedure for patients with corneal blindness. Despite the streamlining of surgical techniques and deeper understanding of the cellular and molecular pathways mediating rejection, corticosteroids are still the main immunosuppressive regimen in corneal transplantation, and the 15-year survival of corneal transplants remains as low as 50%, which is poorer than that for most solid organ transplants. Recently, mesenchymal stromal cells (MSCs) with unique regenerative and immune-modulating properties have emerged as a promising cell therapy to promote transplant tolerance, minimize the use of immunosuppressants, and prevent chronic rejection. Here, we review the literature on preclinical studies of MSCs for corneal transplantation and summarize the key findings from clinical trials with MSCs in solid organ transplantation. Finally, we highlight current issues and challenges regarding MSC therapies and suggest strategies for safe and effective MSC-based therapies in clinical transplantation.
Collapse
|
4
|
Galindo S, de la Mata A, López-Paniagua M, Herreras JM, Pérez I, Calonge M, Nieto-Miguel T. Subconjunctival injection of mesenchymal stem cells for corneal failure due to limbal stem cell deficiency: state of the art. Stem Cell Res Ther 2021; 12:60. [PMID: 33441175 PMCID: PMC7805216 DOI: 10.1186/s13287-020-02129-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have unique and beneficial properties and are currently used to treat a broad variety of diseases. These properties include the potential for differentiation into other cell types, secretion of different trophic factors that promote a regenerative microenvironment, anti-inflammatory actions, selective migration to damaged tissues, and non-immunogenicity. MSCs are effective for the treatment of ocular surface diseases such as dry eye, corneal burns, and limbal stem cell deficiency (LSCD), both in experimental models and in humans. LSCD is a pathological condition in which damage occurs to the limbal epithelial stem cells, or their niche, that are responsible for the continuous regeneration of the corneal epithelium. If LSCD is extensive and/or severe, it usually causes corneal epithelial defects, ulceration, and conjunctival overgrowth of the cornea. These changes can result in neovascularization and corneal opacity, severe inflammation, pain, and visual loss. The effectiveness of MSCs to reduce corneal opacity, neovascularization, and inflammation has been widely studied in different experimental models of LSCD and in some clinical trials; however, the methodological disparity used in the different studies makes it hard to compare outcomes among them. In this regard, the MSC route of administration used to treat LSCD and other ocular surface diseases is an important factor. It should be efficient, minimally invasive, and safe. So far, intravenous and intraperitoneal injections, topical administration, and MSC transplantation using carrier substrata like amniotic membrane (AM), fibrin, or synthetic biopolymers have been the most commonly used administration routes in experimental models. However, systemic administration carries the risk of potential side effects and transplantation requires surgical procedures that could complicate the process. Alternatively, subconjunctival injection is a minimally invasive and straightforward technique frequently used in ophthalmology. It enables performance of local treatments using high cell doses. In this review, we provide an overview of the current status of MSC administration by subconjunctival injection, analyzing the convenience, safety, and efficacy for treatment of corneal failure due to LSCD in different experimental models. We also provide a summary of the clinical trials that have been completed, are in progress, or being planned.
Collapse
Affiliation(s)
- Sara Galindo
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Ana de la Mata
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain. .,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.
| | - Marina López-Paniagua
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Jose M Herreras
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Inmaculada Pérez
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Margarita Calonge
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Teresa Nieto-Miguel
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain. .,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.
| |
Collapse
|
5
|
A combination of CMC and α-MSH inhibited ROS activated NLRP3 inflammasome in hyperosmolarity stressed HCECs and scopolamine-induced dry eye rats. Sci Rep 2021; 11:1184. [PMID: 33441928 PMCID: PMC7807058 DOI: 10.1038/s41598-020-80849-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/20/2020] [Indexed: 11/09/2022] Open
Abstract
An important mechanism involved in dry eye (DE) is the association between tear hyperosmolarity and inflammation severity. Inflammation in DE might be mediated by the NLRP3 inflammasome, which activated by exposure to reactive oxygen species (ROS). A combination of carboxymethylcellulose (CMC) and α-melanocyte stimulating hormone (α-MSH) may influence DE through this mechanism, thus avoiding defects of signal drug. In this study, we assessed whether treatment comprising CMC combined with α-MSH could ameliorate ocular surface function; we found that it promoted tear secretion, reduced the density of fluorescein sodium staining, enhanced the number of conjunctival goblet cells, and reduced the number of corneal apoptotic cells. Investigation of the underlying mechanism suggested that the synergistic effect of combined treatment alleviated DE inflammation through reduction of ROS level and inhibition of the NLRP3 inflammasome in human corneal epithelial cells. These findings indicate that combined CMC + α-MSH treatment could ameliorate lesions and restore ocular surface function in patients with DE through reduction of ROS level and inhibition of NLRP3 signalling.
Collapse
|
6
|
Tian H, Wu J, Ma M. Implications of macrophage polarization in corneal transplantation rejection. Transpl Immunol 2020; 64:101353. [PMID: 33238187 DOI: 10.1016/j.trim.2020.101353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Corneal transplantation rejection remains an urgent problem threatening the success rate of high-risk patients. Macrophages are involved in the rejection of corneal transplants. Macrophages have M1 and M2 phenotypes, classified according their response to external stimuli. Macrophage polarization, through which these distinct forms are activated, is not only involved in the occurrence and development of inflammation, tumors, and autoimmune and other diseases, but also participates in graft rejection. This study provides an overview of the types of macrophages and mechanisms of their polarization, and review current knowledge regarding their involvement in corneal transplantation and potential therapeutic applications. Consideration of the relationship between the direction of macrophage polarization and the determination of graft survival and how it can be modified, is important for the development of novel corneal anti-rejection therapies.
Collapse
Affiliation(s)
- Huiwen Tian
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing Wu
- Department of Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Ming Ma
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Cruz-Barrera M, Flórez-Zapata N, Lemus-Diaz N, Medina C, Galindo CC, González-Acero LX, Correa L, Camacho B, Gruber J, Salguero G. Integrated Analysis of Transcriptome and Secretome From Umbilical Cord Mesenchymal Stromal Cells Reveal New Mechanisms for the Modulation of Inflammation and Immune Activation. Front Immunol 2020; 11:575488. [PMID: 33117373 PMCID: PMC7561386 DOI: 10.3389/fimmu.2020.575488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cells (MSC) have been used in over 800 clinical trials with encouraging results in the field of transplant medicine and chronic inflammatory diseases. Today, Umbilical Cord (UC)-derived MSC are the second leading source used for clinical purposes, mainly due to its easy access and superior immune modulatory effects. Although the underlying molecular mechanisms of immune suppressive activities have not been fully understood, research over the last decade strongly suggests that MSC-mediated benefits are closely related to activation of secretome networks. Nevertheless, recent findings also point to cytokine-independent mechanisms as key players of MSC-mediated immune modulation. Here, we set up a robust in vitro immune assay using phytohemagglutinin- or anti-CD3/CD28-treated human peripheral blood mononuclear cells in cell-to-cell interaction or in cell-contact independent format with UC-MSC and conducted integrated transcriptome and secretome analyses to dissect molecular pathways driving UC-MSC-mediated immune modulation. Under inflammatory stimuli, multiparametric analyses of the secretome led us to identify cytokine/chemokine expression patterns associated with the induction of MSC-reprogrammed macrophages and T cell subsets ultimately leading to immune suppression. UC-MSC transcriptome analysis under inflammatory challenge allowed the identification of 47 differentially expressed genes, including chemokines, anti- and pro-inflammatory cytokines and adhesion molecules found also in UC-MSC-immunosupressive secretomes, including the novel candidate soluble IL-2R. This study enabled us to track functionally activated UC-MSC during immune suppression and opened an opportunity to explore new pathways involved in immunity control by UC-MSC. We propose that identified immunomodulatory molecules and pathways could potentially be translated into clinical settings in order to improve UC-MSC-therapy quality and efficacy.
Collapse
Affiliation(s)
- Mónica Cruz-Barrera
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud - IDCBIS, Bogotá, Colombia
| | - Nathalia Flórez-Zapata
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud - IDCBIS, Bogotá, Colombia.,Universidad EIA, Envigado, Colombia
| | - Nicolás Lemus-Diaz
- Junior Research Group Medical RNA Biology, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Carlos Medina
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud - IDCBIS, Bogotá, Colombia
| | - Cristian-Camilo Galindo
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud - IDCBIS, Bogotá, Colombia
| | - Lorena-Xiomara González-Acero
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud - IDCBIS, Bogotá, Colombia
| | - Luz Correa
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud - IDCBIS, Bogotá, Colombia
| | - Bernardo Camacho
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud - IDCBIS, Bogotá, Colombia
| | - Jens Gruber
- Junior Research Group Medical RNA Biology, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Gustavo Salguero
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud - IDCBIS, Bogotá, Colombia
| |
Collapse
|