1
|
Borchel A, Heggland EI, Nilsen F. Without a pinch of salt: effect of low salinity on eggs and nauplii of the salmon louse (Lepeophtheirus salmonis). Parasitol Res 2023:10.1007/s00436-023-07890-8. [PMID: 37266740 DOI: 10.1007/s00436-023-07890-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/27/2023] [Indexed: 06/03/2023]
Abstract
The salmon louse is an economically important parasite on Atlantic salmon and poses a major threat to aquaculture. Several treatment methods have lost their effect due to resistance development in the lice. A rather new method for combatting sea lice is freshwater treatment where the various life stages of lice are differently affected by this treatment. In this study, we analyzed the effect of freshwater on the egg strings. A 3-h treatment with freshwater had a detrimental effect on the egg strings. First, the water penetrated the string, widening it, then entering the eggs and enlarging them. Finally, the ordered structure of the egg strings collapsed, and no alive animals hatched. Shorter treatments had a lower effectivity, and treatments with brackish water also showed milder effects. The egg strings were found to have a protective effect against low salinities, as hatched nauplii died rapidly under conditions that embryos survived. We also found that embryos react to low salinity on a molecular level by changing gene expression of several genes, when incubated in brackish water. Additionally, the hatching of embryos treated with brackish water was delayed in comparison to seawater controls.
Collapse
Affiliation(s)
- Andreas Borchel
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | | | - Frank Nilsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Ren M, Lu J, Li D, Yang J, Zhang Y, Dong J, Niu Y, Zhou X, Zhang X. Identification and Functional Characterization of Two Chitin Synthases in the Black Cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:574-583. [PMID: 36757382 DOI: 10.1093/jee/toac193] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 05/30/2023]
Abstract
The black cutworm, Agrotis ipsilon (Hufnagel), a seasonal migrant and a prolific generalist, can feed on nearly all vegetables and grain crops, causing considerable economic impacts on a global scale. Given its cryptic nature, A. ipsilon management has been extremely challenging. Chitin synthase (CHS), a key enzyme involved in chitin biosynthetic pathway and crucially important for the growth and development of insects, is the molecular target of chitin synthesis inhibitors, a group of broad-spectrum insecticides that is compatible with Integrated Pest Management practices. In this study, we investigated the potential of targeting chitin synthases to control A. ipsilon. As a result, two chitin synthases, AiCHS1 and AiCHS2, were identified and cloned from A. ipsilon. The temporal-spatial distribution study showed that AiCHS1 was predominantly expressed at the pupal stage and most abundant among tissues of head capsule and integument, while AiCHS2 was mainly expressed at the sixth instar larval stage and tissues of foregut and midgut. RNAi-based functional study confirmed gene silencing caused significant reduction in the expression levels of the corresponding mRNA, as well as resulted in abnormal pupation and mortality, respectively. Furthermore, under the treatment of lufenuron, a chitin synthesis inhibitor, A. ipsilon responded with an elevated expression in AiCHS1 and AiCHS2, while larvae showed difficulty in shedding old cuticle, and a cumulative mortality of 69.24% at 48 h. In summary, chitin synthases are crucial for chitin biosynthesis in A. ipsilon and can be targeted for the control (e.g., RNAi-based biopesticides) of this devastating insect pest.
Collapse
Affiliation(s)
- Meifeng Ren
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Junjiao Lu
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Daqi Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Jing Yang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Yuying Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Jinming Dong
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Yanbing Niu
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Xianhong Zhang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
3
|
A century of parasitology in fisheries and aquaculture. J Helminthol 2023; 97:e4. [PMID: 36631485 DOI: 10.1017/s0022149x22000797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fish parasitological research associated with fisheries and aquaculture has expanded remarkably over the past century. The application of parasites as biological tags has been one of the fields in which fish parasitology has generated new insight into fish migration and stock assessments worldwide. It is a well-established discipline whose methodological issues are regularly reviewed and updated. Therefore, no concepts or case-studies will be repeated here; instead, we summarize some of the main recent findings and achievements of this methodology. These include the extension of its use in hosts other than bony fishes; the improvements in the selection of parasite tags; the recognition of the host traits affecting the use of parasite tags; and the increasingly recognized need for integrative, multidisciplinary studies combining parasites with classical methods and modern techniques, such as otolith microchemistry and genetics. Archaeological evidence points to the existence of parasitic problems associated with aquaculture activities more than a thousand years ago. However, the main surge of research within aquaculture parasitology occurred with the impressive development of aquaculture over the past century. Protozoan and metazoan parasites, causing disease in domesticated fish in confined environments, have attracted the interest of parasitologists and, due to their economic importance, funding was made available for basic and applied research. This has resulted in a profusion of basic knowledge about parasite biology, physiology, parasite-host interactions, life cycles and biochemistry. Due to the need for effective control methods, various solutions targeting host-parasite interactions (immune responses and host finding), genetics and pharmacological aspects have been in focus.
Collapse
|
4
|
Lv H, Ling S, Guo Z, Zheng C, Ma H, Li J, Ma K. Effects of lufenuron treatments on the growth and development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109499. [PMID: 36336329 DOI: 10.1016/j.cbpc.2022.109499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Lufenuron is an effective benzoylurea insecticide that inhibits the synthesis of chitin and regulates the growth of insects. However, little is known about the effects of lufenuron treatment on the development of Spodoptera frugiperda (J. E. Smith). In this study, we assessed the toxicity of lufenuron on S. frugiperda and evaluated the effects of lufenuron treatment on the growth and development of S. frugiperda. The results showed that lufenuron exhibits high insecticidal activity against S. frugiperda, with the LC50 value of 0.99 mg L-1. Lufenuron treatments can significantly prolong the larval developmental duration and reduce the rates of pupation and emergence. To further explore the underlying mechanism of this observation, the expression profiles of the chitin synthase gene (SfCHS) and chitinase gene (SfCHT), two key enzyme genes involved in the molting of S. frugiperda, were determined after exposure to lufenuron for 96 h. The results of qRT-PCR demonstrated that lufenuron treatments can significantly reduce the expression of SfCHT, while the expression of SfCHS remained relatively stable. Furthermore, we found that lufenuron strongly interacted with chitinase (SfCHT) (-10.8 kcal/mol) and chitin synthase (SfCHS) (R1: -9.7 kcal/mol; R2: -10.2 kcal/mol). Our results indicated that lufenuron has significant effects on the development of S. frugiperda that might be attributed to the differential expression of SfCHT and SfCHS.
Collapse
Affiliation(s)
- Haixiang Lv
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shanshan Ling
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhimin Guo
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chengfeng Zheng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huina Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kangsheng Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
5
|
Abstract
Finfish aquaculture in freshwater and marine environments is continuously expanding globally, and the potential for a substantial further increase is well documented. The industry is supplying fish products for human consumption to the same extent as capture fisheries, and new fish species for domestication are still being selected by the industry. The challenge faced by all aquacultured species, classical and novel, is the range of pathogens associated with each new fish type. A fish host in its natural environment carries a series of more or less specific parasites (specialists and generalists). Some of these show a marked ability to propagate in aquaculture settings. They may then elicit disease when infection intensities in the confined aquaculture environment reach high levels. In addition, the risk of transmission of parasites from aquaculture enterprises to wild fish stocks adds to the parasitic challenge. Control programmes of various kinds are needed and these may include chemotherapeutants and medicines as the farmer's first and convenient choice, but mechanical, biological, immunological and genetic control methods are available solutions. New methods are still to be developed by scrutinizing the life cycle of each particular parasite species and pin-pointing the vulnerable stage to be targeted. As parasites exhibit a huge potential for adaptation to environmental changes, one must realize that only one approach rarely is sufficient. The present work therefore elaborates on and advocates for implementation of integrated control strategies for diseases caused by protozoan and metazoan parasites.
Collapse
|
6
|
Peritrophin-like Genes Are Associated with Delousing Drug Response and Sensitivity in the Sea Louse Caligus rogercresseyi. Int J Mol Sci 2022; 23:ijms232113341. [DOI: 10.3390/ijms232113341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Caligus rogercresseyi is the main ectoparasite that affects the salmon industry in Chile. The mechanisms used by the parasite to support its life strategy are of great interest for developing control strategies. Due to the critical role of insect peritrophins in host–parasite interactions and response to pest control drugs, this study aimed to identify and characterize the peritrophin-like genes present in C. rogercresseyi. Moreover, the expression of peritrophin-like genes was evaluated on parasites exposed to delousing drugs such as pyrethroids and azamethiphos. Peritrophin genes were identified by homology analysis among the sea louse transcriptome database and arthropods peritrophin-protein database obtained from GenBank and UniProt. Moreover, the gene loci in the parasite genome were located. Furthermore, peritrophin gene expression levels were evaluated by RNA-Seq analysis in sea louse developmental stages and sea lice exposed to delousing drugs deltamethrin, cypermethrin, and azamethiphos. Seven putative peritrophin-like genes were identified in C. rogercresseyi with high homology with other crustacean peritrophins. Differences in the presence of signal peptides, the number of chitin-binding domains, and the position of conserved cysteines were found. In addition, seven peritrophin-like gene sequences were identified in the C. rogercresseyi genome. Gene expression analysis revealed a stage-dependent expression profile. Notably, differential regulation of peritrophin genes in resistant and susceptible populations to delousing drugs was found. These data are the first report and characterization of peritrophin genes in the sea louse C. rogercresseyi, representing valuable knowledge to understand sea louse biology. Moreover, this study provides evidence for a deeper understanding of the molecular basis of C. rogercresseyi response to delousing drugs.
Collapse
|
7
|
Zhou Z, Eichner C, Nilsen F, Jonassen I, Dondrup M. A novel approach to co-expression network analysis identifies modules and genes relevant for moulting and development in the Atlantic salmon louse (Lepeophtheirus salmonis). BMC Genomics 2021; 22:832. [PMID: 34789144 PMCID: PMC8600823 DOI: 10.1186/s12864-021-08054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The salmon louse (Lepeophtheirus salmonis) is an obligate ectoparasitic copepod living on Atlantic salmon and other salmonids in the marine environment. Salmon lice cause a number of environmental problems and lead to large economical losses in aquaculture every year. In order to develop novel parasite control strategies, a better understanding of the mechanisms of moulting and development of the salmon louse at the transcriptional level is required. METHODS Three weighted gene co-expression networks were constructed based on the pairwise correlations of salmon louse gene expression profiles at different life stages. Network-based approaches and gene annotation information were applied to identify genes that might be important for the moulting and development of the salmon louse. RNA interference was performed for validation. Regulatory impact factors were calculated for all the transcription factor genes by examining the changes in co-expression patterns between transcription factor genes and deferentially expressed genes in middle stages and moulting stages. RESULTS Eight gene modules were predicted as important, and 10 genes from six of the eight modules have been found to show observable phenotypes in RNA interference experiments. We knocked down five hub genes from three modules and observed phenotypic consequences in all experiments. In the infection trial, no copepodids with a RAB1A-like gene knocked down were found on fish, while control samples developed to chalimus-1 larvae. Also, a FOXO-like transcription factor obtained highest scores in the regulatory impact factor calculation. CONCLUSIONS We propose a gene co-expression network-based approach to identify genes playing an important role in the moulting and development of salmon louse. The RNA interference experiments confirm the effectiveness of our approach and demonstrated the indispensable role of a RAB1A-like gene in the development of the salmon louse. We propose that our approach could be generalized to identify important genes associated with a phenotype of interest in other organisms.
Collapse
Affiliation(s)
- Zhaoran Zhou
- Department of Informatics & Sea Lice Research Centre, University of Bergen, Thormøhlensgate 55, Bergen, 5008 Norway
| | - Christiane Eichner
- Department of Biological Sciences & Sea Lice Research Centre, University of Bergen, Thormøhlensgate 55, Bergen, 5008 Norway
| | - Frank Nilsen
- Department of Biological Sciences & Sea Lice Research Centre, University of Bergen, Thormøhlensgate 55, Bergen, 5008 Norway
| | - Inge Jonassen
- Department of Informatics & Sea Lice Research Centre, University of Bergen, Thormøhlensgate 55, Bergen, 5008 Norway
| | - Michael Dondrup
- Department of Informatics & Sea Lice Research Centre, University of Bergen, Thormøhlensgate 55, Bergen, 5008 Norway
| |
Collapse
|
8
|
Kavanat Beerahassan R, Dileep N, Pillai D. Changes in the proximate and elemental composition of Alitropus typus (Crustacea: Flabellifera: Aegidae) exposed to lethal dose of bacterial consortium. J Parasit Dis 2021; 45:859-868. [PMID: 34475669 PMCID: PMC8368488 DOI: 10.1007/s12639-021-01374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022] Open
Abstract
Alitropus typus is a crustacean parasite, which is increasingly becoming a menace to aquafarmers. In our previous study, a novel microbial consortium comprising of three exoskeleton degrading bacterial strains (Stenotrophomonas maltophilia, Bacillus altitudinis and Klebsiella pneumoniae) had shown promising results as a biocontrol agent for A. typus. The present investigation reports the changes in proximate and elemental composition associated with the application of microbial consortium on the isopod A. typus. Proximate analysis showed an increased level of protein, lipid, and moisture in treated isopod at 48 h compared with untreated isopod. However, ash and chitin concentrations were lower in treated isopod. The elements in the mid-tergite of untreated isopod was compared with the treated isopod at 48 h using scanning electron microscopy and energy dispersive x-ray spectroscopy (SEM-EDAX). The following elements were analyzed in the mid-tergite segment of untreated isopod: C, O, Na, Mg, Al, Si, P, S, Cl, K, Ca and Fe. The results showed that the concentration of calcium had decreased significantly in the treated isopod at 48 h (4.28 ± 0.11%) when compared to the untreated isopod (10.01 ± 0.32%), indicating that the bound form of calcium carbonate in the exoskeleton had been precipitated by microbial action. The concentration of carbon and phosphorous was higher in the treated isopods at 48 h compared to the untreated ones. The data suggests that treatment with microbial consortium is not only an effective but also an environmentally safe alternative for the control of A. typus.
Collapse
Affiliation(s)
- Rajeena Kavanat Beerahassan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Cochin, Kerala 682 506 India
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Cochin, Kerala 682 506 India
| | - Namitha Dileep
- Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Panangad, Cochin, Kerala 682 506 India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Cochin, Kerala 682 506 India
| |
Collapse
|
9
|
Identification of critical enzymes in the salmon louse chitin synthesis pathway as revealed by RNA interference-mediated abrogation of infectivity. Int J Parasitol 2020; 50:873-889. [PMID: 32745476 DOI: 10.1016/j.ijpara.2020.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/10/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Treatment of infestation by the ectoparasite Lepeophtheirus salmonis relies on a small number of chemotherapeutant treatments that currently meet with limited success. Drugs targeting chitin synthesis have been largely successful against terrestrial parasites where the pathway is well characterised. However, a comparable approach against salmon lice has been, until recently, less successful, likely due to a poor understanding of the chitin synthesis pathway. Post-transcriptional silencing of genes by RNA interference (RNAi) is a powerful method for evaluation of protein function in non-model organisms and has been successfully applied to the salmon louse. In the present study, putative genes coding for enzymes involved in L. salmonis chitin synthesis were characterised after knockdown by RNAi. Nauplii I stage L. salmonis were exposed to double-stranded (ds) RNA specific for several putative non-redundant points in the pathway: glutamine: fructose-6-phosphate aminotransferase (LsGFAT), UDP-N-acetylglucosamine pyrophosphorylase (LsUAP), N-acetylglucosamine phosphate mutase (LsAGM), chitin synthase 1 (LsCHS1), and chitin synthase 2 (LsCHS2). Additionally, we targeted three putative chitin deacetylases (LsCDA4557, 5169 and 5956) by knockdown. Successful knockdown was determined after moulting to the copepodite stage by real-time quantitative PCR (RT-qPCR), while infectivity potential (the number of attached chalimus II compared with the initial number of larvae in the system) was measured after exposure to Atlantic salmon and subsequent development on their host. Compared with controls, infectivity potential was not compromised in dsAGM, dsCHS2, dsCDA4557, or dsCDA5169 groups. In contrast, there was a significant effect in the dsUAP-treated group. However, of most interest was the treatment with dsGFAT, dsCHS1, dsCHS1+2, and dsCDA5956, which resulted in complete abrogation of infectivity, despite apparent compensatory mechanisms in the chitin synthesis pathway as detected by qPCR. There appeared to be a common phenotypic effect in these groups, characterised by significant aberrations in appendage morphology and an inability to swim. Ultrastructurally, dsGFAT showed a significantly distorted procuticle without distinct exo/endocuticle and intermittent electron dense (i.e. chitin) inclusions, and together with dsUAP and dsCHS1, indicated delayed entry to the pre-moult phase.
Collapse
|
10
|
Shao ZM, Li YJ, Zhang XR, Chu J, Ma JH, Liu ZX, Wang J, Sheng S, Wu FA. Identification and Functional Study of Chitin Metabolism and Detoxification-Related Genes in Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) Based on Transcriptome Analysis. Int J Mol Sci 2020; 21:ijms21051904. [PMID: 32164390 PMCID: PMC7084822 DOI: 10.3390/ijms21051904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/01/2023] Open
Abstract
Glyphodes pyloalis Walker (Lepidoptera: Pyralididae) is a serious pest in the sericulture industry, which has caused damage and losses in recent years. With the widespread use of insecticides, the insecticide resistance of G. pyloalis has becomes increasingly apparent. In order to find other effective methods to control G. pyloalis, this study performed a transcriptome analysis of the midgut, integument, and whole larvae. Transcriptome data were annotated with KEGG and GO, and they have been shown to be of high quality by RT-qPCR. The different significant categories of differentially expressed genes between the midgut and the integument suggested that the transcriptome data could be used for next analysis. With the exception of Dda9 (GpCDA5), 19 genes were involved in chitin metabolism, most of which had close protein–protein interactions. Among them, the expression levels of 11 genes, including GpCHSA, GpCDA1, GpCDA2, GpCDA4, GPCHT1, GPCHT2a, GPCHT3a, GPCHT7, GpTre1, GpTre2, and GpRtv were higher in the integument than in the midgut, while the expression levels of the last eight genes, including GpCHSB, GpCDA5, GpCHT2b, GpCHT3b, GpCHT-h, GpPAGM, GpNAGK, and GpUAP, were higher in the midgut than in the integument. Moreover, 282 detoxification-related genes were identified and can be divided into 10 categories, including cytochrome P450, glutathione S-transferase, carboxylesterase, nicotinic acetylcholine receptor, aquaporin, chloride channel, methoprene-tolerant, serine protease inhibitor, sodium channel, and calcium channel. In order to further study the function of chitin metabolism-related genes, dsRNA injection knocked down the expression of GpCDA1 and GpCHT3a, resulting in the significant downregulation of its downstream genes. These results provide an overview of chitin metabolism and detoxification of G. pyloalis and lay the foundation for the effective control of this pest in the sericulture industry.
Collapse
Affiliation(s)
- Zuo-min Shao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
| | - Yi-jiangcheng Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
| | - Xiao-rui Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
| | - Jie Chu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
| | - Jia-hui Ma
- Zhenjiang Runshen Sericulture Development Co., Ltd, Zhenjiang 212001, China;
| | - Zhi-xiang Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
| | - Sheng Sheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
- Correspondence: (S.S.); (F.-a.W.)
| | - Fu-an Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
- Correspondence: (S.S.); (F.-a.W.)
| |
Collapse
|