1
|
Ravan A, Procopio S, Chemla YR, Gruebele M. Temperature-jump microscopy and interaction of Hsp70 heat shock protein with a client protein in vivo. Methods 2024; 231:154-164. [PMID: 39362572 DOI: 10.1016/j.ymeth.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
Biomolecular processes such as protein-protein interactions can depend strongly on cell type and even vary within a single cell type. Here we develop a microscope with a Peltier-controlled temperature stage, a laser temperature jump to induce heat stress, and an autofocusing feature to mitigate temperature drift during experiments, to study a protein-protein interaction in a selected cell type within a live organism, the zebrafish larva. As an application of the instrument, we show that there is considerable cell-to-cell variation of the heat shock protein Hsp70 binding to one of its clients, phosphoglycerate kinase in vivo. We adapt a key feature from our previous folding study, rare transformation of cells within the larva, so that individual cells can be imaged and differentiated for cell-to-cell response. Our approach can be extended to other organisms and cell types than the ones demonstrated in this work.
Collapse
Affiliation(s)
- Aniket Ravan
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana Champaign, Urbana 61801, USA
| | - Samuel Procopio
- Department of Physics, University of Illinois Urbana Champaign, Urbana 61801, USA
| | - Yann R Chemla
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana Champaign, Urbana 61801, USA; Department of Physics, University of Illinois Urbana Champaign, Urbana 61801, USA
| | - Martin Gruebele
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana Champaign, Urbana 61801, USA; Department of Physics, University of Illinois Urbana Champaign, Urbana 61801, USA; Department of Chemistry and Carle-Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana 61801, USA.
| |
Collapse
|
2
|
Nordquist EB, Clerico EM, Chen J, Gierasch LM. Computationally-Aided Modeling of Hsp70-Client Interactions: Past, Present, and Future. J Phys Chem B 2022; 126:6780-6791. [PMID: 36040440 PMCID: PMC10309085 DOI: 10.1021/acs.jpcb.2c03806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hsp70 molecular chaperones play central roles in maintaining a healthy cellular proteome. Hsp70s function by binding to short peptide sequences in incompletely folded client proteins, thus preventing them from misfolding and/or aggregating, and in many cases holding them in a state that is competent for subsequent processes like translocation across membranes. There is considerable interest in predicting the sites where Hsp70s may bind their clients, as the ability to do so sheds light on the cellular functions of the chaperone. In addition, the capacity of the Hsp70 chaperone family to bind to a broad array of clients and to identify accessible sequences that enable discrimination of those that are folded from those that are not fully folded, which is essential to their cellular roles, is a fascinating puzzle in molecular recognition. In this article we discuss efforts to harness computational modeling with input from experimental data to develop a predictive understanding of the promiscuous yet selective binding of Hsp70 molecular chaperones to accessible sequences within their client proteins. We trace how an increasing understanding of the complexities of Hsp70-client interactions has led computational modeling to new underlying assumptions and design features. We describe the trend from purely data-driven analysis toward increased reliance on physics-based modeling that deeply integrates structural information and sequence-based functional data with physics-based binding energies. Notably, new experimental insights are adding to our understanding of the molecular origins of "selective promiscuity" in substrate binding by Hsp70 chaperones and challenging the underlying assumptions and design used in earlier predictive models. Taking the new experimental findings together with exciting progress in computational modeling of protein structures leads us to foresee a bright future for a predictive understanding of selective-yet-promiscuous binding exploited by Hsp70 molecular chaperones; the resulting new insights will also apply to substrate binding by other chaperones and by signaling proteins.
Collapse
Affiliation(s)
- Erik B. Nordquist
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, 01003, United States
| | - Eugenia M. Clerico
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, 01003, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, 01003, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, 01003, United States
| | - Lila M. Gierasch
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, 01003, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, 01003, United States
| |
Collapse
|
3
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Mora-Sierra Z, Gopan G, Chang R, Leckband DE, Gruebele M. Stabilization and Kinetics of an Adsorbed Protein Depends on the Poly( N-isopropylacrylamide) Grafting Density. Biomacromolecules 2021; 22:4470-4478. [PMID: 34606244 DOI: 10.1021/acs.biomac.1c00417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solubility transition at the lower critical solution temperature (LCST, 32 °C) of poly(N-isopropylacrylamide) (PNIPAM) is widely used as a thermal switch to rapidly and reversibly capture and release proteins and cells. It is generally assumed that proteins adsorbed to PNIPAM above the LCST are unaffected by polymer interactions. Here we show that the folding stability of the enzyme phosphoglycerate kinase (PGK) is increased by interactions with end-grafted PNIPAM films above the LCST. We systematically compare two protein mutants with different stabilities. The stabilization mirrors the degree of protein adsorption under grafting conditions studied previously. Maximum stabilization occurs when proteins adsorb to low density, collapsed polymer "mushrooms". In the denser polymer "brush" regime, protein stabilization decreases back to a value indistinguishable from the bulk solution, consistent with low protein adsorption on dense, collapsed brushes. The temperature-dependent kinetics measured by Fast Relaxation Imaging reveals that PNIPAM does not affect the overall folding/unfolding mechanism. Based on the different stabilizations of two mutants and the relaxation kinetics, we hypothesize that the polymer acts mainly by increasing the conformational entropy of the folded protein by interacting with the protein surface and less by crowding the unfolded state of PGK.
Collapse
|
5
|
Gruebele M, Pielak GJ. Dynamical spectroscopy and microscopy of proteins in cells. Curr Opin Struct Biol 2021; 70:1-7. [PMID: 33662744 DOI: 10.1016/j.sbi.2021.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022]
Abstract
With a strong understanding of how proteins fold in hand, it is now possible to ask how in-cell environments modulate their folding, binding and function. Studies accessing fast (ns to s) in-cell dynamics have accelerated over the past few years through a combination of in-cell NMR spectroscopy and time-resolved fluorescence microscopies. Here, we discuss this recent work and the emerging picture of protein surfaces as not just hydrophilic coats interfacing the solvent to the protein's core and functional regions, but as critical components in cells controlling protein mobility, function and communication with post-translational modifications.
Collapse
Affiliation(s)
- Martin Gruebele
- Department of Chemistry, Department of Physics, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Gary J Pielak
- Departments of Chemistry, Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Mistrik M, Skrott Z, Muller P, Panacek A, Hochvaldova L, Chroma K, Buchtova T, Vandova V, Kvitek L, Bartek J. Microthermal-induced subcellular-targeted protein damage in cells on plasmonic nanosilver-modified surfaces evokes a two-phase HSP-p97/VCP response. Nat Commun 2021; 12:713. [PMID: 33514738 PMCID: PMC7846584 DOI: 10.1038/s41467-021-20989-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/07/2021] [Indexed: 11/18/2022] Open
Abstract
Despite proteotoxic stress and heat shock being implicated in diverse pathologies, currently no methodology to inflict defined, subcellular thermal damage exists. Here, we present such a single-cell method compatible with laser-scanning microscopes, adopting the plasmon resonance principle. Dose-defined heat causes protein damage in subcellular compartments, rapid heat-shock chaperone recruitment, and ensuing engagement of the ubiquitin-proteasome system, providing unprecedented insights into the spatiotemporal response to thermal damage relevant for degenerative diseases, with broad applicability in biomedicine. Using this versatile method, we discover that HSP70 chaperone and its interactors are recruited to sites of thermally damaged proteins within seconds, and we report here mechanistically important determinants of such HSP70 recruitment. Finally, we demonstrate a so-far unsuspected involvement of p97(VCP) translocase in the processing of heat-damaged proteins. Overall, we report an approach to inflict targeted thermal protein damage and its application to elucidate cellular stress-response pathways that are emerging as promising therapeutic targets.
Collapse
Affiliation(s)
- Martin Mistrik
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| | - Zdenek Skrott
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Petr Muller
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ales Panacek
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Lucie Hochvaldova
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Katarina Chroma
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Tereza Buchtova
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Veronika Vandova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Libor Kvitek
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
- Danish Cancer Society Research Center, Copenhagen, Denmark.
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
7
|
Gopan G, Gruebele M, Rickard M. In-cell protein landscapes: making the match between theory, simulation and experiment. Curr Opin Struct Biol 2020; 66:163-169. [PMID: 33254078 DOI: 10.1016/j.sbi.2020.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/10/2020] [Indexed: 11/26/2022]
Abstract
Theory, computation and experiment have matched up for the folding of small proteins in vitro, a difficult feat because folding energy landscapes are fairly smooth and free energy differences between states are small. Smoothness means that protein structure and folding are susceptible to the local environment inside living cells. Theory, computation and experiment are now exploring cellular modulation of energy landscapes. Interesting concepts have emerged, such as co-evolution of protein surfaces with their cellular environment to reduce detrimental interactions. Here we look at very recent work beginning to bring together theory, simulations and experiments in the area of protein landscape modulation, to see what problems might be solved in the near future by combining these approaches.
Collapse
Affiliation(s)
- Gopika Gopan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martin Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Meredith Rickard
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Kohler V, Andréasson C. Hsp70-mediated quality control: should I stay or should I go? Biol Chem 2020; 401:1233-1248. [PMID: 32745066 DOI: 10.1515/hsz-2020-0187] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/11/2020] [Indexed: 12/30/2022]
Abstract
Chaperones of the 70 kDa heat shock protein (Hsp70) superfamily are key components of the cellular proteostasis system. Together with its co-chaperones, Hsp70 forms proteostasis subsystems that antagonize protein damage during physiological and stress conditions. This function stems from highly regulated binding and release cycles of protein substrates, which results in a flow of unfolded, partially folded and misfolded species through the Hsp70 subsystem. Specific factors control how Hsp70 makes decisions regarding folding and degradation fates of the substrate proteins. In this review, we summarize how the flow of Hsp70 substrates is controlled in the cell with special emphasis on recent advances regarding substrate release mechanisms.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
9
|
Guin D, Gruebele M. Chaperones Hsc70 and Hsp70 Bind to the Protein PGK Differently inside Living Cells. J Phys Chem B 2020; 124:3629-3635. [DOI: 10.1021/acs.jpcb.0c00519] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Drishti Guin
- Department of Chemistry, University of Illinois Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Martin Gruebele
- Department of Chemistry, University of Illinois Urbana—Champaign, Urbana, Illinois 61801, United States
- Department of Physics and Center for Biophysics and Quantitative Biology, University of Illinois Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Davis CM, Deutsch J, Gruebele M. An in vitro mimic of in-cell solvation for protein folding studies. Protein Sci 2020; 29:1060-1068. [PMID: 31994240 DOI: 10.1002/pro.3833] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 01/15/2023]
Abstract
Ficoll, an inert macromolecule, is a common in vitro crowder, but by itself it does not reproduce in-cell stability or kinetic trends for protein folding. Lysis buffer, which contains ions, glycerol as a simple kosmotrope, and mimics small crowders with hydrophilic/hydrophobic patches, can reproduce sticking trends observed in cells but not the crowding. We previously suggested that the proper combination of Ficoll and lysis buffer could reproduce the opposite in-cell folding stability trend of two proteins: variable major protein-like sequence expressed (VlsE) is destabilized in eukaryotic cells and phosphoglycerate kinase (PGK) is stabilized. Here, to discover a well-characterized solvation environment that mimics in-cell stabilities for these two very differently behaved proteins, we conduct a two-dimensional scan of Ficoll (0-250 mg/ml) and lysis buffer (0-75%) mixtures. Contrary to our previous expectation, we show that mixtures of Ficoll and lysis buffer have a significant nonadditive effect on the folding stability. Lysis buffer enhances the stabilizing effect of Ficoll on PGK and inhibits the stabilizing effect of Ficoll on VlsE. We demonstrate that a combination of 150 mg/ml Ficoll and 60% lysis buffer can be used as an in vitro mimic to account for both crowding and non-steric effects on PGK and VlsE stability and folding kinetics in the cell. Our results also suggest that this mixture is close to the point where phase separation will occur. The simple mixture proposed here, based on commercially available reagents, could be a useful tool to study a variety of cytoplasmic protein interactions, such as folding, binding and assembly, and enzymatic reactions. SIGNIFICANCE STATEMENT: The complexity of the in-cell environment is difficult to reproduce in the test tube. Here we validate a mimic of cellular crowding and sticking interactions in a test tube using two proteins that are differently impacted by the cell: one is stabilized and the other is destabilized. This mimic is a starting point to reproduce cellular effects on a variety of protein and biomolecular interactions, such as folding and binding.
Collapse
Affiliation(s)
- Caitlin M Davis
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jonathan Deutsch
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Martin Gruebele
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|