1
|
Singh HR, Tiwari P, Deb PK, Rakshit G, Maity P, Mohanlall V, Gleiser RM, Venugopala KN, Chandrashekharappa S. Larvicidal activity, molecular docking, and molecular dynamics studies of 7-(trifluoromethyl)indolizine derivatives against Anopheles arabiensis. Mol Divers 2024:10.1007/s11030-024-10994-7. [PMID: 39377893 DOI: 10.1007/s11030-024-10994-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/14/2024] [Indexed: 10/09/2024]
Abstract
A novel series of 7-(trifluoromethyl)indolizine derivatives (4a-4n) was synthesized using a 1,3-Dipolar cycloaddition reaction. Structure elucidation of the synthesized compounds was done using various spectroscopic techniques. Compounds were assessed for their larvicidal activity against Anopheles arabiensis. Exposure of Anopheles arabiensis larvae to a series of 7-(trifluoromethyl)indolizine at 4 µg/mL for 24 and 48 h resulted in moderate to high larval mortality rates. Among them, compounds 4b, 4a, 4g, and 4m exhibited the most promising larvicidal activities, with mortality rates of 94.4%, 93.3%, 80.00%, and 85.6%, respectively, compared to controls, Acetone and Temephos. The structural activity relationship analysis of the evaluated compounds revealed that substitution with halogens or electron-withdrawing groups (CN, F, Cl, Br) at the para position of the benzoyl group is crucial for achieving promising larvicidal activity. Molecular docking studies were carried out involving six potential larvicidal target proteins to predict how the tested compounds might work. Compounds 4a and 4b showed strong binding to the Mosquito Juvenile Hormone-Binding Protein (5V13). Molecular dynamics (MD) simulations confirmed the stability of the protein-ligand complexes over the simulation period, reinforcing the reliability of the docking results. Compounds 4a and 4b also exhibited favourable ADMET profiles, showing high oral bioavailability, good permeability, moderate distribution, low plasma protein binding, sufficient metabolic stability, efficient renal clearance and low toxicity. Given the crucial role of Juvenile Hormone in regulating gene expression and developmental pathways through receptor interactions, compounds 4a and 4b show promise as inhibitors of this protein. Inhibiting this process could hinder larval growth and reproduction, presenting a promising approach for early-stage mosquito larvicidal activity. Therefore, compounds 4a and 4b represent lead candidates for further optimization and the development of new larvicidal agents.
Collapse
Affiliation(s)
- Harshada Rambaboo Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli, Near CRPF Base Camp, Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, UP, 226002, India
| | - Priya Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli, Near CRPF Base Camp, Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, UP, 226002, India
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology (BIT), Mesra, Ranchi, Jharkhand, 835215, India.
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology (BIT), Mesra, Ranchi, Jharkhand, 835215, India
| | - Prasenjit Maity
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology (BIT), Mesra, Ranchi, Jharkhand, 835215, India
| | - Viresh Mohanlall
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, 4000, South Africa
| | - Raquel M Gleiser
- CREAN-IMBIV (UNC-CONICET), Universidad Nacional de Cordoba, Av. Valparaiso s.n., and FCEFyN, Av. V. Sarsfield 299, 5000, Cordoba, Argentina
| | - Katharigatta N Venugopala
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, 4000, South Africa
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Sandeep Chandrashekharappa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli, Near CRPF Base Camp, Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, UP, 226002, India.
| |
Collapse
|
2
|
Tiwari P, Mangubhai GS, Kidwai S, Singh R, Chandrashekharappa S. Design, synthesis and characterization of ethyl 3-benzoyl-7-morpholinoindolizine-1-carboxylate as anti-tubercular agents: In silico screening for possible target identification. Chem Biol Drug Des 2024; 103:e14512. [PMID: 38570316 DOI: 10.1111/cbdd.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
A thorough search for the development of innovative drugs to treat tuberculosis, especially considering the urgent need to address developing drug resistance, we report here a synthetic series of ethyl 3-benzoyl-7-morpholinoindolizine-1-carboxylate analogues (5a-o) as potent anti-tubercular agents. These morpholino-indolizines were synthesized by reacting 4-morpholino pyridinium salts, with various electron-deficient acetylenes to afford the ethyl 3-benzoyl-7-morpholinoindolizine-1-carboxylate analogues (5a-o). All synthesized intermediate and final compounds are characterized by spectroscopic methods such as 1H NMR, 13C NMR and HRMS and further examined for their anti-tubercular activity against the M. tuberculosis H37Rv strain (ATCC 27294-American type cell culture). All the compounds screened for anti-tubercular activity in the range of 6.25-50 μM against the H37Rv strain of Mycobacterium tuberculosis. Compound 5g showed prominent activity with MIC99 2.55 μg/mL whereas compounds 5d and 5j showed activity with MIC99 18.91 μg/mL and 25.07 μg/mL, respectively. In silico analysis of these compounds revealed drug-likeness. Additionally, the molecular target identification for Malate synthase (PDB 5CBB) is attained by computational approach. The compound 5g with a MIC99 value of 2.55 μg/mL against M. tuberculosis H37Rv emerged as the most promising anti-TB drug and in silico investigations suggest Malate synthase (5CBB) might be the compound's possible target.
Collapse
Affiliation(s)
- Priya Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli, Lucknow, India
| | - Gayakvad Sunitaben Mangubhai
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli, Lucknow, India
| | - Saqib Kidwai
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Sandeep Chandrashekharappa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli, Lucknow, India
| |
Collapse
|
3
|
Shende SU, Al-Shar'i NA, Saini SM, Mohanlall V, Gleiser RM, Deb PK, Morsy MA, Venugopala KN, Chandrashekharappa S. Synthesis, characterization and larvicidal studies of ethyl 3-benzoyl-7-(piperidin-1-yl)indolizine-1-carboxylate analogues against Anopheles arabiensis and cheminformatics approaches. J Biomol Struct Dyn 2024:1-13. [PMID: 38315452 DOI: 10.1080/07391102.2024.2311881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
According to WHO, in 2021, there was an estimation of 247 million malaria cases from 84 malaria-endemic countries. Globally an estimated count of 2 billion malaria cases and 11.7 million deaths due to malaria were recorded in the past two decades. Further, the emergence of drug-resistant mosquitos threatens mankind. Therefore, the development of newer larvicidal agents is the need of the hour. This research identifies a new series of variably substituted indolizines for their effectiveness in controlling Anopheles arabiensis larvae through larvicidal activity. The series of Ethyl 3-benzoyl-7-(piperidin-1-yl)indolizine-1-carboxylate analogues (4a-j) were synthesized by reacting 4-(piperidin-1-yl)pyridine, phenacyl bromides with ethyl propiolate via 1, 3-dipolar cycloaddition and the green metrics of the process are reported. All the newly synthesized compounds were characterized by spectroscopic techniques such as 1H NMR,13C NMR, FT-IR, and HRMS. The larvicidal effectiveness of the newly synthesized compounds was assessed against Anopheles arabiensis. Among the compounds studied, namely 4c, 4d, 4e, and 4f, displayed the most notable larval mortality rates within the series, reaching 73%, 81%, 76%, and 71% respectively, in contrast with the negative control acetone. In comparison, the standard Temephos exhibited a mortality rate of 99% at the same concentration. Furthermore, computational approaches including molecular docking and molecular dynamics simulations identified the potential targets of the series compounds as the larval Acetylcholinesterase (AChE) enzyme and the Sterol Carrier Protein-2 (SCP-2) protein. However, it is essential for these computational predictions to undergo experimental validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sondarya Uttam Shende
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli (NIPER-R), Lucknow, UP, India
| | - Nizar A Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Surbhi Mahender Saini
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli (NIPER-R), Lucknow, UP, India
| | - Viresh Mohanlall
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Raquel M Gleiser
- CREAN-IMBIV (UNC-CONICET), Av. Valparaiso s.n., and FCEFyN, Av. V. Sarsfield 299, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology (BIT), Mesra, Ranchi, Jharkhand, India
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Katharigatta N Venugopala
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Sandeep Chandrashekharappa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli (NIPER-R), Lucknow, UP, India
| |
Collapse
|
4
|
Mundhe P, Kidwai S, Saini SM, Singh HR, Singh R, Chandrashekharappa S. Design, Synthesis, Characterization, and Anti-tubercular activity of Novel Ethyl-3-benzoyl-6, 8-difluoroindolizine-1-carboxylate Analogues: Molecular Target Identification and Molecular Docking Studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
5
|
Venugopala KN, Chandrashekharappa S, Tratrat C, Deb PK, Nagdeve RD, Nayak SK, Morsy MA, Borah P, Mahomoodally FM, Mailavaram RP, Attimarad M, Aldhubiab BE, Sreeharsha N, Nair AB, Alwassil OI, Haroun M, Mohanlall V, Shinu P, Venugopala R, Kandeel M, Nandeshwarappa BP, Ibrahim YF. Crystallography, Molecular Modeling, and COX-2 Inhibition Studies on Indolizine Derivatives. Molecules 2021; 26:molecules26123550. [PMID: 34200764 PMCID: PMC8230391 DOI: 10.3390/molecules26123550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
The cyclooxygenase-2 (COX-2) enzyme is an important target for drug discovery and development of novel anti-inflammatory agents. Selective COX-2 inhibitors have the advantage of reduced side-effects, which result from COX-1 inhibition that is usually observed with nonselective COX inhibitors. In this study, the design and synthesis of a new series of 7-methoxy indolizines as bioisostere indomethacin analogues (5a-e) were carried out and evaluated for COX-2 enzyme inhibition. All the compounds showed activity in micromolar ranges, and the compound diethyl 3-(4-cyanobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5a) emerged as a promising COX-2 inhibitor with an IC50 of 5.84 µM, as compared to indomethacin (IC50 = 6.84 µM). The molecular modeling study of indolizines indicated that hydrophobic interactions were the major contribution to COX-2 inhibition. The title compound diethyl 3-(4-bromobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5c) was subjected for single-crystal X-ray studies, Hirshfeld surface analysis, and energy framework calculations. The X-ray diffraction analysis showed that the molecule (5c) crystallizes in the monoclinic crystal system with space group P 21/n with a = 12.0497(6)Å, b = 17.8324(10)Å, c = 19.6052(11)Å, α = 90.000°, β = 100.372(1)°, γ = 90.000°, and V = 4143.8(4)Å3. In addition, with the help of Crystal Explorer software program using the B3LYP/6-31G(d, p) basis set, the theoretical calculation of the interaction and graphical representation of energy value was measured in the form of the energy framework in terms of coulombic, dispersion, and total energy.
Collapse
Affiliation(s)
- Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa;
- Correspondence: (K.N.V.); (S.C.); Tel.: +966-1358-98842 (K.N.V.); +91-94486-39413 (S.C.)
| | - Sandeep Chandrashekharappa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-R) Raebareli, Lucknow UP 226002, India
- Institute for Stem Cell Science and Regenerative Medicine, NCBS, TIFR, GKVK, Bellary Road, Bangalore 560065, India
- Correspondence: (K.N.V.); (S.C.); Tel.: +966-1358-98842 (K.N.V.); +91-94486-39413 (S.C.)
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
| | - Pran Kishore Deb
- Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| | - Rahul D. Nagdeve
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India; (R.D.N.); (S.K.N.)
| | - Susanta K. Nayak
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India; (R.D.N.); (S.K.N.)
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt;
| | - Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati 781026, Assam, India;
| | - Fawzi M. Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80835, Mauritius;
| | - Raghu Prasad Mailavaram
- Department of Pharmaceutical Chemistry, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram 534202, India;
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
| | - Bandar E. Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
| | - Osama I. Alwassil
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia;
| | - Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
| | - Viresh Mohanlall
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Rashmi Venugopala
- Department of Public Health Medicine, Howard College Campus, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Belakatte P. Nandeshwarappa
- Department of Studies in Chemistry, Shivagangotri, Davangere University, Davangere, Karnataka 577007, India;
| | - Yasmine F. Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt;
| |
Collapse
|
6
|
Abstract
INTRODUCTION Indolizines are structural isomers with indoles. Although several indole-based commercial drugs are available in the market, none of the indolizine-based drugs are available up-to-date. Natural and synthetic indolizines have a wide-range of pharmaceutical importance such as antitumor, antimycobacterial, antagonist, and antiproliferative activities. This prompted us to search and collect all possible data about the pharmacological importance of indolizine to open an avenue to the researchers in exploring more medicinal applications of such biologically important compounds. AREAS COVERED The current review article covers the advancements in the biological and pharmacological activities of indolizine-based compounds during the last decade. The covered areas of this work involved anticancer, anti-HIV-1, anti-inflammatory, antimicrobial, anti-tubercular, larvicidal, anti-schizophrenia, CRTh2 antagonist's activities in addition to enzymatic inhibitory activity. EXPERT OPINION The discovery of indolizine drugs will be a major breakthrough as compared with their widely available drug-containing indole isosteres. Major work collected here was focused on anticancer, anti-tubercular, anti-inflammatory, and enzymatic inhibitory activities. The SAR study of the reported biologically active indolizines is summarized throughout the review whenever highlighted to the rationale the behavior of inhibitory action. Several indolizines with certain functions provided great enhancement in the therapeutic activities comparing with reference drugs.
Collapse
Affiliation(s)
- Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University , Giza, Egypt
| | - Ashraf A Abbas
- Department of Chemistry, Faculty of Science, Cairo University , Giza, Egypt
| |
Collapse
|