1
|
Ahme A, Happe A, Striebel M, Cabrerizo MJ, Olsson M, Giesler J, Schulte-Hillen R, Sentimenti A, Kühne N, John U. Warming increases the compositional and functional variability of a temperate protist community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171971. [PMID: 38547992 DOI: 10.1016/j.scitotenv.2024.171971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Phototrophic protists are a fundamental component of the world's oceans by serving as the primary source of energy, oxygen, and organic nutrients for the entire ecosystem. Due to the high thermal seasonality of their habitat, temperate protists could harbour many well-adapted species that tolerate ocean warming. However, these species may not sustain ecosystem functions equally well. To address these uncertainties, we conducted a 30-day mesocosm experiment to investigate how moderate (12 °C) and substantial (18 °C) warming compared to ambient conditions (6 °C) affect the composition (18S rRNA metabarcoding) and ecosystem functions (biomass, gross oxygen productivity, nutritional quality - C:N and C:P ratio) of a North Sea spring bloom community. Our results revealed warming-driven shifts in dominant protist groups, with haptophytes thriving at 12 °C and diatoms at 18 °C. Species responses primarily depended on the species' thermal traits, with indirect temperature effects on grazing being less relevant and phosphorus acting as a critical modulator. The species Phaeocystis globosa showed highest biomass on low phosphate concentrations and relatively increased in some replicates of both warming treatments. In line with this, the C:P ratio varied more with the presence of P. globosa than with temperature. Examining further ecosystem responses under warming, our study revealed lowered gross oxygen productivity but increased biomass accumulation whereas the C:N ratio remained unaltered. Although North Sea species exhibited resilience to elevated temperatures, a diminished functional similarity and heightened compositional variability indicate potential ecosystem repercussions for higher trophic levels. In conclusion, our research stresses the multifaceted nature of temperature effects on protist communities, emphasising the need for a holistic understanding that encompasses trait-based responses, indirect effects, and functional dynamics in the face of exacerbating temperature changes.
Collapse
Affiliation(s)
- Antonia Ahme
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | - Anika Happe
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
| | - Maren Striebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
| | - Marco J Cabrerizo
- Department of Ecology, University of Granada, Campus Fuentenueva s/n 1, 18071 Granada, Spain; Department of Ecology and Animal Biology, University of Vigo, Campus Lagoas Marcosende s/n, 36310 Vigo, Spain
| | - Markus Olsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, 106 91 Stockholm, Sweden
| | - Jakob Giesler
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Ruben Schulte-Hillen
- Albert-Ludwigs-Universität Freiburg, Fahnenbergplatz, 79104 Freiburg i.Br., Germany
| | - Alexander Sentimenti
- Albert-Ludwigs-Universität Freiburg, Fahnenbergplatz, 79104 Freiburg i.Br., Germany
| | - Nancy Kühne
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Uwe John
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Ammerländer Heersstraße 231, 26129 Oldenburg, Germany
| |
Collapse
|
2
|
Wolf KKE, Hoppe CJM, Rehder L, Schaum E, John U, Rost B. Heatwave responses of Arctic phytoplankton communities are driven by combined impacts of warming and cooling. SCIENCE ADVANCES 2024; 10:eadl5904. [PMID: 38758795 PMCID: PMC11100554 DOI: 10.1126/sciadv.adl5904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Marine heatwaves are increasing in frequency and intensity as climate change progresses, especially in the highly productive Arctic regions. Although their effects on primary producers will largely determine the impacts on ecosystem services, mechanistic understanding on phytoplankton responses to these extreme events is still very limited. We experimentally exposed Arctic phytoplankton assemblages to stable warming, as well as to repeated heatwaves, and measured temporally resolved productivity, physiology, and composition. Our results show that even extreme stable warming increases productivity, while the response to heatwaves depends on the specific scenario applied and is not predictable from stable warming responses. This appears to be largely due to the underestimated impact of the cool phase following a heatwave, which can be at least as important as the warm phase for the overall response. We show that physiological and compositional adjustments to both warm and cool phases drive overall phytoplankton productivity and need to be considered mechanistically to predict overall ecosystem impacts.
Collapse
Affiliation(s)
- Klara K. E. Wolf
- Institute of Marine Ecosystem and Fishery Science, University of Hamburg, Hamburg, Germany
- Environmental Genomics, University of Konstanz, Konstanz, Germany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Clara J. M. Hoppe
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Linda Rehder
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Elisa Schaum
- Institute of Marine Ecosystem and Fishery Science, University of Hamburg, Hamburg, Germany
| | - Uwe John
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany
| | - Björn Rost
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- FB2, University of Bremen, Bremen, Germany
| |
Collapse
|
3
|
Lin L, Liu Y, Yan Y, Kang B. Optimizing efficiency and resilience of no-take marine protected areas for fish conservation under climate change along the coastlines of China Seas. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14174. [PMID: 37650435 DOI: 10.1111/cobi.14174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/29/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Climate change is one of the major threats to coastal fish biodiversity, and optimization of no-take marine protected areas (MPAs) is imminent. We predicted fish redistribution under climate change in coastal China Seas with joint species distribution modeling and prioritized areas for conservation with Zonation, for which we used core area zonation (CAZ) and additive benefit function (ABF). Based on our results, we devised an expansion plan of no-take MPAs. Under climate change, fish were redistributed northward along the coast. These redistributions were segmented by the Yangtze River estuary and its adjacent waters, indicating a possible biogeographical barrier. Under CAZ and ABF, significantly more fish habitat was conserved than under random prioritization (p < 0.001, Cohen's d = -0.36 and -0.62, respectively). The ABF better represented areas with higher species richness, whereas CAZ better represented core habitats for species with narrow distributions. Without accounting for species redistribution, the expanded MPAs were mainly distributed in the northwest of the South China Sea, the East China Sea, the north of the Yellow Sea, and the west of the Bohai Sea. When accounting for species redistribution, the proposed MPAs were mainly distributed in the north of the Bohai Sea and southwest of the Yellow Sea, corresponding to the northern species redistributions. These MPAs conserved less habitat for fishes at present but protected more and better quality habitat for fishes in 2050 and 2100 than those MPAs that did not account for species redistribution, indicating improved fish conservation under climate change. Incorporating species redistribution and trade-offs between areas with high species richness and areas that contain habitats for rare species are suggested to address coastal fish conservation under climate change. This work provides valuable information for fish conservation and is a precursor to systematic conservation planning along the coastlines of China Seas.
Collapse
Affiliation(s)
- Li Lin
- College of Fisheries, Ocean University of China, Qingdao, China
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Yang Liu
- College of Fisheries, Ocean University of China, Qingdao, China
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Yang Yan
- College of Fisheries, Ocean University of China, Qingdao, China
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Bin Kang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| |
Collapse
|
4
|
Lin L, Deng WD, Li JT, Kang B. Whether including exotic species alters conservation prioritization: a case study in the Min River in southeastern China. JOURNAL OF FISH BIOLOGY 2024; 104:450-462. [PMID: 36843140 DOI: 10.1111/jfb.15356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Conservation practices from the perspective of functional diversity (FD) and conservation prioritization need to account for the impacts of exotic species in freshwater ecosystems. This work first simulated the influence of exotic species on the values of FD in a schemed mechanistic model, and then a practical case study of conservation prioritization was performed in the Min River, the largest river in southeastern China, to discuss whether including exotic species alters prioritization. The mechanistic model revealed that exotic species significantly altered the expected FD if the number of exotic species occupied 2% of the community. Joint species distribution modelling indicated that the highest FD occurred in the west, northwest and north upstreams of the Min River. Values of FD in 64.69% of the basin decreased after the exotic species were removed from calculation. Conservation prioritization with the Zonation software proved that if first the habitats of exotic species were removed during prioritization, 62.75% of the highest prioritized areas were shifted, average species representation of the endemic species was improved and mean conservation efficiency was increased by 7.53%. Existence of exotic species will significantly alter the metrics of biodiversity and the solution for conservation prioritization, and negatively weighting exotic species in the scope of conservation prioritization is suggested to better protect endemic species. This work advocates a thorough estimate of the impacts of exotic species on FD and conservation prioritization, providing complementary evidence for conservation biology and valuable implications for local freshwater fish conservation.
Collapse
Affiliation(s)
- Li Lin
- College of Fisheries, Ocean University of China, Qingdao, China
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Wei-De Deng
- Department of Oceanography, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Jin-Tao Li
- College of Fisheries, Ocean University of China, Qingdao, China
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Bin Kang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| |
Collapse
|
5
|
van de Poll WH, Abi Nassif T. The interacting effect of prolonged darkness and temperature on photophysiological characteristics of three Antarctic phytoplankton species. JOURNAL OF PHYCOLOGY 2023; 59:1053-1063. [PMID: 37589181 DOI: 10.1111/jpy.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/18/2023]
Abstract
Photophysiological characteristics of the Southern Ocean phytoplankton species Phaeocystis antarctica, Geminigera cryophila, and Chaetoceros simplex were assessed during 7 weeks of darkness and subsequent recovery after darkness at 4 and 7°C. Chlorophyll a fluorescence and maximum quantum efficiency of PSII decreased during long darkness in a species-specific manner, whereas chlorophyll a concentration remained mostly unchanged. Phaeocystis antarctica showed the strongest decline in photosynthetic fitness during darkness, which coincided with a reduced capacity to recover after darkness, suggesting a loss of functional photosystem II (PSII) reaction centers. The diatom C. simplex at 4°C showed the strongest capacity to resume photosynthesis and active growth during 7 weeks of darkness. In all species, the maintenance of photosynthetic fitness during darkness was clearly temperature dependent as shown by the stronger decline of photosynthetic fitness at 7°C compared to 4°C. Although we lack direct evidence for this, we suggest that temperature-enhanced respiration rates cause stronger depletion of energy reserves that subsequently interferes with the maintenance of photosynthetic fitness during long darkness. Therefore, the current low temperatures in the coastal Southern Ocean may aid the maintenance of photosynthetic fitness during the austral winter. Further experiments should examine to what extent the species-specific differences in dark survival are relevant for future temperature scenarios for the coastal Southern Ocean.
Collapse
Affiliation(s)
- Willem H van de Poll
- CIO Oceans, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Talia Abi Nassif
- CIO Oceans, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Papry RI, Miah S, Hasegawa H. Integrated environmental factor-dependent growth and arsenic biotransformation by aquatic microalgae: A review. CHEMOSPHERE 2022; 303:135164. [PMID: 35654229 DOI: 10.1016/j.chemosphere.2022.135164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) is a toxic metalloid posing harming the human food chain through trophic transfer. Microalgae are primary producers, ensuring bioaccumulation and biogeochemical cycling of As in water environment. They are highly efficient at removing As from the environment, making these microscopic organisms eco-friendly and money saving method in As remediation process. However, microalgal growth and As biotransformation potential relies greatly on individual and integrated environmental factors. This review scrutinizes the available literature on the As biotransformation potentials of various marine and freshwater microalgae under individual and integrated stresses of such factors. Various combinations of important factors such as temperature, salinity, concentrations of As (V) and PO43─, pH, light intensity, and length of exposure period are summarized along with the optimum conditions for different microalgae. The effects of environmental factors on microalgal growth, changes in cell shape, and the relationship between As biotransformation and other activities are discussed in detail. Time-dependent As speciation pattern by aquatic microalgae are reviewed. Conceptual models highlighting the microalgal species particularly linked with environmental factor-dependent As biotransformation mechanisms are also summarized. This review will contribute to an in depth understanding of the connection between environmental factors, As uptake, and the biotransformation mechanism of marine and freshwater microalgae from the perspective of As remediation process.
Collapse
Affiliation(s)
- Rimana Islam Papry
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| | - Sohag Miah
- Institute of Forestry and Environmental Sciences, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| |
Collapse
|
7
|
Anthropogenic Inputs Affect Phytoplankton Communities in a Subtropical Estuary. WATER 2022. [DOI: 10.3390/w14040636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In the past few decades, with the rapid economic development of China and Vietnam, the marine ecological environment of Beibu Gulf is facing increasing pressure. To understand the impact of anthropogenic inputs on marine ecology, high-performance liquid chromatography (HPLC) was used to study phytoplankton in this paper. We examined the influence of anthropogenic inputs on phytoplankton biomass and community structure in a subtropical estuary. Anthropogenic inputs had significantly increased the nutrient concentration in the estuary between 2010 and 2015. We observed that phosphorus limitation has been greatly relieved in 2015. However, the biomass of dominant phytoplankton was lower in 2015 than in 2010, possibly due to the expansion of oyster farming in the estuary. The coverage of oyster rafts was estimated to be 26.3 km2. The presence of dense oysters may significantly reduce the phytoplankton biomass. The proportion of Diatoms decreased while some nano- and pico-phytoplankton (like Cryptophytes and Prasinophytes) increased, which indicated that oysters changed not only the biomass but also the size of phytoplankton communities. This study improved our understanding of anthropogenic inputs on phytoplankton communities in subtropical estuary.
Collapse
|
8
|
Bozzato D, Jakob T, Wilhelm C, Trimborn S. Effects of iron limitation on carbon balance and photophysiology of the Antarctic diatom Chaetoceros cf. simplex. Polar Biol 2021. [DOI: 10.1007/s00300-020-02785-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractIn the Southern Ocean (SO), iron (Fe) limitation strongly inhibits phytoplankton growth and generally decreases their primary productivity. Diatoms are a key component in the carbon (C) cycle, by taking up large amounts of anthropogenic CO2 through the biological carbon pump. In this study, we investigated the effects of Fe availability (no Fe and 4 nM FeCl3 addition) on the physiology of Chaetoceros cf. simplex, an ecologically relevant SO diatom. Our results are the first combining oxygen evolution and uptake rates with particulate organic carbon (POC) build up, pigments, photophysiological parameters and intracellular trace metal (TM) quotas in an Fe-deficient Antarctic diatom. Decreases in both oxygen evolution (through photosynthesis, P) and uptake (respiration, R) coincided with a lowered growth rate of Fe-deficient cells. In addition, cells displayed reduced electron transport rates (ETR) and chlorophyll a (Chla) content, resulting in reduced cellular POC formation. Interestingly, no differences were observed in non-photochemical quenching (NPQ) or in the ratio of gross photosynthesis to respiration (GP:R). Furthermore, TM quotas were measured, which represent an important and rarely quantified parameter in previous studies. Cellular quotas of manganese, zinc, cobalt and copper remained unchanged while Fe quotas of Fe-deficient cells were reduced by 60% compared with High Fe cells. Based on our data, Fe-deficient Chaetoceros cf. simplex cells were able to efficiently acclimate to low Fe conditions, reducing their intracellular Fe concentrations, the number of functional reaction centers of photosystem II (RCII) and photosynthetic rates, thus avoiding light absorption rather than dissipating the energy through NPQ. Our results demonstrate how Chaetoceros cf. simplex can adapt their physiology to lowered assimilatory metabolism by decreasing respiratory losses.
Collapse
|