1
|
Vastel M, Pau-Roblot C, Ferré S, Tocqueville V, Ambroset C, Marois-Créhan C, Gautier-Bouchardon AV, Tardy F, Gaurivaud P. Capsular Polysaccharide Production in Bacteria of the Mycoplasma Genus: A Huge Diversity of Pathways and Synthases for So-Called Minimal Bacteria. Mol Microbiol 2024; 122:866-878. [PMID: 39473362 DOI: 10.1111/mmi.15325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 12/21/2024]
Abstract
Mycoplasmas are wall-less bacteria with many species spread across various animal hosts in which they can be pathogenic. Despite their reduced anabolic capacity, some mycoplasmas are known to secrete hetero- and homopolysaccharides, which play a role in host colonization through biofilm formation or immune evasion, for instance. This study explores how widespread the phenomenon of capsular homopolysaccharide secretion is within mycoplasmas, and investigates the diversity of both the molecules produced and the synthase-type glycosyltransferases responsible for their production. Fourteen strains representing 14 (sub)species from four types of hosts were tested in vitro for their polysaccharide secretion using both specific (immunodetection) and nonspecific (sugar dosage) assays. We evidenced a new, atypical homopolymer of β-(1 → 6)-glucofuranose (named glucofuranan) in the human pathogen Mycoplasma (M.) fermentans, as well as a β-(1 → 6)-glucopyranose polymer for the turkey pathogen M. iowae and galactan (β-(1 → 6)-galactofuranose) and β-(1 → 2)-glucopyranose for M. bovigenitalium infecting ruminants. Sequence and phylogenetic analyses revealed a huge diversity of synthases from varied Mycoplasma species. The clustering of these membrane-embedded glycosyltransferases into three main groups was only partially correlated to the structure of the produced homopolysaccharides.
Collapse
Affiliation(s)
- Manon Vastel
- ANSES-Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses Animales, Université de Lyon, Lyon, France
- ANSES-Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, Ploufragan, France
| | - Corinne Pau-Roblot
- UMRT INRAE 1158 BioEcoAgro - Biologie des Plantes et Innovation, Université de Picardie Jules Verne, UFR des Sciences, Amiens, France
| | - Séverine Ferré
- ANSES-Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, Ploufragan, France
| | - Véronique Tocqueville
- ANSES-Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, Ploufragan, France
| | - Chloé Ambroset
- ANSES-Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses Animales, Université de Lyon, Lyon, France
| | - Corinne Marois-Créhan
- ANSES-Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, Ploufragan, France
| | - Anne V Gautier-Bouchardon
- ANSES-Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, Ploufragan, France
| | - Florence Tardy
- ANSES-Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses Animales, Université de Lyon, Lyon, France
- ANSES-Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, Ploufragan, France
| | - Patrice Gaurivaud
- ANSES-Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses Animales, Université de Lyon, Lyon, France
| |
Collapse
|
2
|
du Preez LL, van der Walt E, Valverde A, Rothmann C, Neser FWC, Cason ED. A metagenomic survey of the fecal microbiome of the African savanna elephant (Loxodonta africana). Anim Genet 2024; 55:621-643. [PMID: 38923598 DOI: 10.1111/age.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
The African savanna elephant (Loxodonta africana) is the largest terrestrial animal on Earth and is found primarily in Southern and Eastern Africa. It is a hindgut, colonic fermenter and subsists on a diet of raw plant materials found in its grazing area. In this study the bacterial, archaeal and fungal populations of seven African savanna elephant fecal metagenomes were first characterized using amplicon sequencing. On the genus level it was observed that the p-1088-a5 gut group in the bacteriome, Methanocorpusulum and Methanobrevibacter in the archaeome and Alternaria, Aurobasidium, Didymella and Preussia in the mycome, predominated. Subsequently, metagenomic shotgun sequencing was employed to identify possible functional pathways and carbohydrate-active enzymes (CAZymes). Carbohydrate catabolic pathways represented the main degradation pathways, and the fecal metagenome was enriched in the glycohydroside (GH) class of CAZymes. Additionally, the top GH families identified - GH43, GH2, GH13 and GH3 - are known to be associated with cellulytic, hemicellulytic and pectolytic activities. Finally, the CAZymes families identified in the African savanna elephant were compared with those found in the Asian elephant and it was demonstrated that there is a unique repository of CAZymes that could be leveraged in the biotechnological context such as the degradation of lignocellulose for the production of second-generation biofuels and energy.
Collapse
Affiliation(s)
- Louis Lategan du Preez
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
| | - Elzette van der Walt
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
| | - Angel Valverde
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Christopher Rothmann
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
| | | | - Errol Duncan Cason
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
| |
Collapse
|
3
|
Wei P, Sun W, Hao S, Deng L, Zou W, Wu H, Lu W, He Y. Dietary Supplementation of Crossbred Pigs with Glycerol, Vitamin C, and Niacinamide Alters the Composition of Gut Flora and Gut Flora-Derived Metabolites. Animals (Basel) 2024; 14:2198. [PMID: 39123724 PMCID: PMC11311027 DOI: 10.3390/ani14152198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The addition of glycerin, vitamin C, and niacinamide to pig diets increased the redness of longissimus dorsi; however, it remains unclear how these supplements affect gut microbiota and metabolites. A total of 84 piglets (20.35 ± 2.14 kg) were randomly allotted to groups A (control), B (glycerin-supplemented), C (vitamin C and niacinamide-supplemented), and D (glycerin, vitamin C and niacinamide-supplemented) during a feeding experiment. Metagenomic and metabolomic technologies were used to analyze the fecal compositions of bile acids, metabolites, and microbiota. The results showed that compared to pigs in group A, pigs in group D had lower virulence factor expressions of lipopolysaccharide (p < 0.05), fatty acid resistance system (p < 0.05), and capsule (p < 0.01); higher fecal levels of ferric ion (p < 0.05), allolithocholic acid (p < 0.01), deoxycholic acid (p < 0.05), tauroursodeoxycholic acid dihydrate (p < 0.01), glycodeoxycholic acid (p < 0.05), L-proline (p < 0.01) and calcitriol (p < 0.01); and higher (p < 0.05) abundances of iron-acquiring microbiota (Methanobrevibacter, Clostridium, Clostridiaceae, Clostridium_sp_CAG_1000, Faecalibacterium_sp_CAG_74_58_120, Eubacteriales_Family_XIII_Incertae_Sedis, Alistipes_sp_CAG_435, Alistipes_sp_CAG_514 and Methanobrevibacter_sp_YE315). Supplementation with glycerin, vitamin C, and niacinamide to pigs significantly promoted the growth of iron-acquiring microbiota in feces, reduced the expression of some virulence factor genes of fecal pathogens, and increased the fecal levels of ferric ion, L-proline, and some secondary bile acids. The administration of glycerol, vitamin C, and niacinamide to pigs may serve as an effective measure for muscle redness improvement by altering the compositions of fecal microbiota and metabolites.
Collapse
Affiliation(s)
- Panting Wei
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Wenchen Sun
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Shaobin Hao
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Linglan Deng
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Wanjie Zou
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Huadong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Wei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Yuyong He
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| |
Collapse
|
4
|
Kozhakhmetova M, Akimbekov N, Digel I, Tastambek K. Evaluating the low-rank coal degradation efficiency bioaugmented with activated sludge. Sci Rep 2024; 14:14827. [PMID: 38937498 PMCID: PMC11211346 DOI: 10.1038/s41598-024-64275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
Microbial bioaugmentation of coal is considered as a viable and ecologically sustainable approach for the utilization of low-rank coals (LRC). The search for novel techniques to derive high-value products from LRC is currently of great importance. In response to this demand, endeavors have been undertaken to develop microbially based coal solubilization and degradation techniques. The impact of supplementing activated sludge (AS) as a microbial augmentation to enhance LRC biodegradation was investigated in this study. The LRC and their biodegradation products were characterized using the following methods: excitation-emission Matrices detected fluorophores at specific wavelength positions (O, E, and K peaks), revealing the presence of organic complexes with humic properties. FTIR indicated the increased amount of carboxyl groups in the bioaugmented coals, likely due to aerobic oxidation of peripheral non-aromatic structural components of coal. The bacterial communities of LRC samples are primarily composed of Actinobacteria (up to 36.2%) and Proteobacteria (up to 25.8%), whereas the Firmicutes (63.04%) was the most abundant phylum for AS. The community-level physiological profile analysis showed that the microbial community AS had high metabolic activity of compared to those of coal. Overall, the results demonstrated successful stimulation of LRC transformation through supplementation of exogenous microflora in the form of AS.
Collapse
Affiliation(s)
| | - Nuraly Akimbekov
- Al-Farabi Kazakh National University, 050040, Almaty, Kazakhstan
- Khoja Akhmet Yassawi International Kazakh-Turkish University, 161200, Turkestan, Kazakhstan
- West Kazakhstan Marat Ospanov Medical University, Maresyev Str. 68, 030019, Aktobe, Kazakhstan
| | - Ilya Digel
- Aachen University of Applied Sciences, Heinrich-Mussmann-Straße 1, 52428, Jülich, Germany
| | - Kuanysh Tastambek
- Al-Farabi Kazakh National University, 050040, Almaty, Kazakhstan
- Khoja Akhmet Yassawi International Kazakh-Turkish University, 161200, Turkestan, Kazakhstan
- M. Auezov South Kazakhstan University, 160012, Shymkent, Kazakhstan
| |
Collapse
|
5
|
Lampugnani ER, Ford K, Ho YY, van de Meene A, Lahnstein J, Tan HT, Burton RA, Fincher GB, Shafee T, Bacic A, Zimmer J, Xing X, Bulone V, Doblin MS, Roberts EM. Glycosyl transferase GT2 genes mediate the biosynthesis of an unusual (1,3;1,4)-β-glucan exopolysaccharide in the bacterium Sarcina ventriculi. Mol Microbiol 2024; 121:1245-1261. [PMID: 38750617 DOI: 10.1111/mmi.15276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 06/14/2024]
Abstract
Linear, unbranched (1,3;1,4)-β-glucans (mixed-linkage glucans or MLGs) are commonly found in the cell walls of grasses, but have also been detected in basal land plants, algae, fungi and bacteria. Here we show that two family GT2 glycosyltransferases from the Gram-positive bacterium Sarcina ventriculi are capable of synthesizing MLGs. Immunotransmission electron microscopy demonstrates that MLG is secreted as an exopolysaccharide, where it may play a role in organizing individual cells into packets that are characteristic of Sarcina species. Heterologous expression of these two genes shows that they are capable of producing MLGs in planta, including an MLG that is chemically identical to the MLG secreted from S. ventriculi cells but which has regularly spaced (1,3)-β-linkages in a structure not reported previously for MLGs. The tandemly arranged, paralogous pair of genes are designated SvBmlgs1 and SvBmlgs2. The data indicate that MLG synthases have evolved different enzymic mechanisms for the incorporation of (1,3)-β- and (1,4)-β-glucosyl residues into a single polysaccharide chain. Amino acid variants associated with the evolutionary switch from (1,4)-β-glucan (cellulose) to MLG synthesis have been identified in the active site regions of the enzymes. The presence of MLG synthesis in bacteria could prove valuable for large-scale production of MLG for medical, food and beverage applications.
Collapse
Affiliation(s)
- Edwin R Lampugnani
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Kris Ford
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, Victoria, Australia
| | - Yin Ying Ho
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Allison van de Meene
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- Ian Holmes Imaging Centre, Bio21, The University of Melbourne, Parkville, Victoria, Australia
| | - Jelle Lahnstein
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Hwei-Ting Tan
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Rachel A Burton
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Geoffrey B Fincher
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Thomas Shafee
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, Victoria, Australia
| | - Antony Bacic
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, Victoria, Australia
| | - Jochen Zimmer
- Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Xiaohui Xing
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
| | - Vincent Bulone
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
| | - Monika S Doblin
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, Victoria, Australia
| | - Eric M Roberts
- Department of Biology, Rhode Island College, Providence, Rhode Island, USA
| |
Collapse
|
6
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
7
|
Kim SJ, Zemelis-Durfee S, Mckinley B, Sokoloski R, Aufdemberge W, Mullet J, Brandizzi F. Cell- and development-specific degradation controls the levels of mixed-linkage glucan in sorghum leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:360-374. [PMID: 37395650 DOI: 10.1111/tpj.16376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Mixed-linkage glucan (MLG) is a component of the cell wall (CW) of grasses and is composed of glucose monomers linked by β-1,3 and β-1,4 bonds. MLG is believed to have several biological functions, such as the mobilizable storage of carbohydrates and structural support of the CW. The extracellular levels of MLG are largely controlled by rates of synthesis mediated by cellulose synthase-like (CSL) enzymes, and turnover by lichenases. Economically important crops like sorghum accumulate MLG to variable levels during development. While in sorghum, like other grasses, there is one major MLG synthase (CSLF6), the identity of lichenases is yet unknown. To fill this gap, we identified three sorghum lichenases (SbLCH1-3) and characterized them in leaves in relation to the expression of SbCSLF6, and the abundance of MLG and starch. We established that SbLCH1-3 are secreted to the apoplast, consistent with a role of degrading MLG extracellularly. Furthermore, while SbCSLF6 expression was associated with cell development, the SbLCH genes exhibited distinct development-, cell-type-specific and diel-regulated expression. Therefore, our study identifies three functional sorghum MLG lichenases and highlights that MLG accumulation in sorghum leaves is likely controlled by the activity of lichenases that tune MLG levels, possibly to suit distinct cell and developmental needs in planta. These findings have important implications for improving the growth, yield, and composition of sorghum as a feedstock.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Starla Zemelis-Durfee
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Brian Mckinley
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, 77845, USA
| | - Rylee Sokoloski
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - William Aufdemberge
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - John Mullet
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, 77845, USA
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
8
|
Michoud G, Kohler TJ, Ezzat L, Peter H, Nattabi JK, Nalwanga R, Pramateftaki P, Styllas M, Tolosano M, De Staercke V, Schön M, Marasco R, Daffonchio D, Bourquin M, Busi SB, Battin TJ. The dark side of the moon: first insights into the microbiome structure and function of one of the last glacier-fed streams in Africa. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230329. [PMID: 37564072 PMCID: PMC10410210 DOI: 10.1098/rsos.230329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023]
Abstract
The glaciers on Africa's 'Mountains of the Moon' (Rwenzori National Park, Uganda) are predicted to disappear within the next decades owing to climate change. Consequently, the glacier-fed streams (GFSs) that drain them will vanish, along with their resident microbial communities. Despite the relevance of microbial communities for performing ecosystem processes in equatorial GFSs, their ecology remains understudied. Here, we show that the benthic microbiome from the Mt. Stanley GFS is distinct at several levels from other GFSs. Specifically, several novel taxa were present, and usually common groups such as Chrysophytes and Polaromonas exhibited lower relative abundances compared to higher-latitude GFSs, while cyanobacteria and diatoms were more abundant. The rich primary producer community in this GFS likely results from the greater environmental stability of the Afrotropics, and accordingly, heterotrophic processes dominated in the bacterial community. Metagenomics revealed that almost all prokaryotes in the Mt. Stanley GFS are capable of organic carbon oxidation, while greater than 80% have the potential for fermentation and acetate oxidation. Our findings suggest a close coupling between photoautotrophs and other microbes in this GFS, and provide a glimpse into the future for high-latitude GFSs globally where primary production is projected to increase with ongoing glacier shrinkage.
Collapse
Affiliation(s)
- Grégoire Michoud
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tyler J. Kohler
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Leïla Ezzat
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hannes Peter
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Juliet Kigongo Nattabi
- Department of Zoology, Entomology and Fisheries Sciences (ZEFs), College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Rosemary Nalwanga
- Department of Zoology, Entomology and Fisheries Sciences (ZEFs), College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Paraskevi Pramateftaki
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michail Styllas
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matteo Tolosano
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vincent De Staercke
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Martina Schön
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Massimo Bourquin
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Susheel Bhanu Busi
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Tom J. Battin
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
9
|
Spiers AJ, Dorfmueller HC, Jerdan R, McGregor J, Nicoll A, Steel K, Cameron S. Bioinformatics characterization of BcsA-like orphan proteins suggest they form a novel family of pseudomonad cyclic-β-glucan synthases. PLoS One 2023; 18:e0286540. [PMID: 37267309 PMCID: PMC10237404 DOI: 10.1371/journal.pone.0286540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
Bacteria produce a variety of polysaccharides with functional roles in cell surface coating, surface and host interactions, and biofilms. We have identified an 'Orphan' bacterial cellulose synthase catalytic subunit (BcsA)-like protein found in four model pseudomonads, P. aeruginosa PA01, P. fluorescens SBW25, P. putida KT2440 and P. syringae pv. tomato DC3000. Pairwise alignments indicated that the Orphan and BcsA proteins shared less than 41% sequence identity suggesting they may not have the same structural folds or function. We identified 112 Orphans among soil and plant-associated pseudomonads as well as in phytopathogenic and human opportunistic pathogenic strains. The wide distribution of these highly conserved proteins suggest they form a novel family of synthases producing a different polysaccharide. In silico analysis, including sequence comparisons, secondary structure and topology predictions, and protein structural modelling, revealed a two-domain transmembrane ovoid-like structure for the Orphan protein with a periplasmic glycosyl hydrolase family GH17 domain linked via a transmembrane region to a cytoplasmic glycosyltransferase family GT2 domain. We suggest the GT2 domain synthesises β-(1,3)-glucan that is transferred to the GH17 domain where it is cleaved and cyclised to produce cyclic-β-(1,3)-glucan (CβG). Our structural models are consistent with enzymatic characterisation and recent molecular simulations of the PaPA01 and PpKT2440 GH17 domains. It also provides a functional explanation linking PaPAK and PaPA14 Orphan (also known as NdvB) transposon mutants with CβG production and biofilm-associated antibiotic resistance. Importantly, cyclic glucans are also involved in osmoregulation, plant infection and induced systemic suppression, and our findings suggest this novel family of CβG synthases may provide similar range of adaptive responses for pseudomonads.
Collapse
Affiliation(s)
- Andrew J. Spiers
- School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Helge C. Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Robyn Jerdan
- School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Jessica McGregor
- Nuffield Research Placement Students, School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Abbie Nicoll
- Nuffield Research Placement Students, School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Kenzie Steel
- Nuffield Research Placement Students, School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Scott Cameron
- School of Applied Sciences, Abertay University, Dundee, United Kingdom
| |
Collapse
|
10
|
Novel Insights into the Mechanism Underlying High Polysaccharide Yield in Submerged Culture of Ganoderma lucidum Revealed by Transcriptome and Proteome Analyses. Microorganisms 2023; 11:microorganisms11030772. [PMID: 36985345 PMCID: PMC10055881 DOI: 10.3390/microorganisms11030772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Polysaccharides are crucial dietary supplements and traditional pharmacological components of Ganoderma lucidum; however, the mechanisms responsible for high polysaccharide yields in G. lucidum remain unclear. Therefore, we investigated the mechanisms underlying the high yield of polysaccharides in submerged cultures of G. lucidum using transcriptomic and proteomic analyses. Several glycoside hydrolase (GH) genes and proteins, which are associated with the degradation of fungal cell walls, were significantly upregulated under high polysaccharide yield conditions. They mainly belonged to the GH3, GH5, GH16, GH17, GH18, GH55, GH79, GH128, GH152, and GH154 families. Additionally, the results suggested that the cell wall polysaccharide could be degraded by GHs, which is beneficial for extracting more intracellular polysaccharides from cultured mycelia. Furthermore, some of the degraded polysaccharides were released into the culture broth, which is beneficial for obtaining more extracellular polysaccharides. Our findings provide new insights into the mechanisms underlying the roles that GH family genes play to regulate high polysaccharide yields in G. lucidum.
Collapse
|
11
|
Controlled processivity in glycosyltransferases: A way to expand the enzymatic toolbox. Biotechnol Adv 2023; 63:108081. [PMID: 36529206 DOI: 10.1016/j.biotechadv.2022.108081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/20/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Glycosyltransferases (GT) catalyse the biosynthesis of complex carbohydrates which are the most abundant group of molecules in nature. They are involved in several key mechanisms such as cell signalling, biofilm formation, host immune system invasion or cell structure and this in both prokaryotic and eukaryotic cells. As a result, research towards complete enzyme mechanisms is valuable to understand and elucidate specific structure-function relationships in this group of molecules. In a next step this knowledge could be used in GT protein engineering, not only for rational drug design but also for multiple biotechnological production processes, such as the biosynthesis of hyaluronan, cellooligosaccharides or chitooligosaccharides. Generation of these poly- and/or oligosaccharides is possible due to a common feature of several of these GTs: processivity. Enzymatic processivity has the ability to hold on to the growing polymer chain and some of these GTs can even control the number of glycosyl transfers. In a first part, recent advances in understanding the mechanism of various processive enzymes are discussed. To this end, an overview is given of possible engineering strategies for the purpose of new industrial and fundamental applications. In the second part of this review, we focused on specific chain length-controlling mechanisms, i.e., key residues or conserved regions, and this for both eukaryotic and prokaryotic enzymes.
Collapse
|
12
|
Zhao X, Liang Q, Song X, Zhang Y. Whole genome sequence of Lactiplantibacillus plantarum MC5 and comparative analysis of eps gene clusters. Front Microbiol 2023; 14:1146566. [PMID: 37200914 PMCID: PMC10185785 DOI: 10.3389/fmicb.2023.1146566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Probiotic Lactiplantibacillus plantarum MC5 produces large amounts of exopolysaccharides (EPS), and its use as a compound fermentor can greatly improve the quality of fermented milk. Methods To gain insight into the genomic characteristics of probiotic MC5 and reveal the relationship between its EPS biosynthetic phenotype and genotype, we analyzed the carbohydrate metabolic capacity, nucleotide sugar formation pathways, and EPS biosynthesis-related gene clusters of strain MC5 based on its whole genome sequence. Finally, we performed validation tests on the monosaccharides and disaccharides that strain MC5 may metabolize. Results Genomic analysis showed that MC5 has seven nucleotide sugar biosynthesis pathways and 11 sugar-specific phosphate transport systems, suggesting that the strain can metabolize mannose, fructose, sucrose, cellobiose, glucose, lactose, and galactose. Validation results showed that strain MC5 can metabolize these seven sugars and produce significant amounts of EPS (> 250 mg/L). In addition, strain MC5 possesses two typical eps biosynthesis gene clusters, which include the conserved genes epsABCDE, wzx, and wzy, six key genes for polysaccharide biosynthesis, and one MC5-specific epsG gene. Discussion These insights into the mechanism of EPS-MC5 biosynthesis can be used to promote the production of EPS through genetic engineering.
Collapse
|
13
|
Song D, Huo T, Zhang Z, Cheng L, Wang L, Ming K, Liu H, Li M, Du X. Metagenomic Analysis Reveals the Response of Microbial Communities and Their Functions in Lake Sediment to Environmental Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192416870. [PMID: 36554758 PMCID: PMC9779402 DOI: 10.3390/ijerph192416870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 05/13/2023]
Abstract
Jingpo Lake is the largest mountain barrier lake in China and plays a key role in breeding, power generation, and providing a source of drinking water. Microbes are important participants in the formation of lake resources and energy cycles. However, the ecological protection of Jingpo Lake has faced serious challenges in recent years. In this study, we investigate the responses of the microbial community's composition of sediments at five locations to an environmental gradient representing water quality and water-depth changes using a metagenomic sequence. We found that the diversity and composition of the microbiota sediments were altered spatially and correlated with the physicochemical factors of water samples. In the microbial community, relatively lower Chao1, alternating conditional expectations, and Shannon and Simpson indices were found at the shallowest location with higher total phosphorus and chlorophyll a. Furthermore, the Kyoto Encyclopedia of Genes and Genomes analysis revealed that the metabolism function was the most abundant functional classification in Jingpo Lake. The levels of total phosphorus, chlorophyll a and pH were positively correlated with the abundance of Flavobacterium and the bacterial functions of the carbohydrate metabolism and amino acid metabolism. In conclusion, our results reveal the physical and chemical characteristics, as well as the microbial community characteristics, of Jingpo Lake, which provides new insights for studying the relationship between environmental factors and the bacterial community distribution of freshwater ecosystems, in addition to also providing a theoretical basis for the environmental monitoring and protection of the lake.
Collapse
Affiliation(s)
- Dan Song
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- Heilongjiang River Basin Fisheries Ecology Observation and Research Station of Heilongjiang Province, Harbin 150070, China
| | - Tangbin Huo
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- Heilongjiang River Basin Fisheries Ecology Observation and Research Station of Heilongjiang Province, Harbin 150070, China
| | - Zhao Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Lei Cheng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- Heilongjiang River Basin Fisheries Ecology Observation and Research Station of Heilongjiang Province, Harbin 150070, China
| | - Le Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- Heilongjiang River Basin Fisheries Ecology Observation and Research Station of Heilongjiang Province, Harbin 150070, China
| | - Kun Ming
- A Reserve Assets Authority, Harbin 150030, China
| | - Hui Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- Heilongjiang River Basin Fisheries Ecology Observation and Research Station of Heilongjiang Province, Harbin 150070, China
| | - Mengsha Li
- Institute of Nature and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China
- Correspondence: (M.L.); (X.D.)
| | - Xue Du
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- Heilongjiang River Basin Fisheries Ecology Observation and Research Station of Heilongjiang Province, Harbin 150070, China
- Correspondence: (M.L.); (X.D.)
| |
Collapse
|
14
|
Tong LL, Wang Y, Yuan L, Liu MZ, Du YH, Mu XY, Yang QH, Wei SX, Li JY, Wang M, Guo DS. Enhancement of polysaccharides production using microparticle enhanced technology by Paraisaria dubia. Microb Cell Fact 2022; 21:12. [PMID: 35090444 PMCID: PMC8796560 DOI: 10.1186/s12934-021-01733-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
Background Polysaccharides are important active ingredients in Ophiocordyceps gracilis with many physiological functions. It can be obtained from the submerged fermentation by the anamorph (Paraisaria dubia) of Ophiocordyceps gracilis. However, it was found that the mycelial pellets of Paraisaria dubia were dense and increased in volume in the process of fermentation, and the center of the pellets was autolysis due to the lack of nutrient delivery, which extremely reduced the yield of polysaccharides. Therefore, it is necessary to excavate a fermentation strategy based on morphological regulation for Paraisaria dubia to promote polysaccharides accumulation. Results In this study, we developed a method for enhancing polysaccharides production by Paraisaria dubia using microparticle enhanced technology, talc microparticle as morphological inducer, and investigated the enhancement mechanisms by transcriptomics. The optimal size and dose of talc were found to be 2000 mesh and 15 g/L, which resulted in a high polysaccharides yield. It was found that the efficient synthesis of polysaccharides requires an appropriate mycelial morphology through morphological analysis of mycelial pellets. And, the polysaccharides synthesis was found to mainly rely on the ABC transporter-dependent pathway revealed by transcriptomics. This method was also showed excellent robustness in 5-L bioreactor, the maximum yields of intracellular polysaccharide and exopolysaccharides were 83.23 ± 1.4 and 518.50 ± 4.1 mg/L, respectively. And, the fermented polysaccharides were stable and showed excellent biological activity. Conclusions This study provides a feasible strategy for the efficient preparation of cordyceps polysaccharides via submerged fermentation with talc microparticles, which may also be applicable to similar macrofungi. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01733-w.
Collapse
Affiliation(s)
- Ling-Ling Tong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Yue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Li Yuan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Meng-Zhen Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Yuan-Hang Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Xin-Ya Mu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Qing-Hao Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Shi-Xiang Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Jun-Ya Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Mian Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
15
|
Chen J, Wang L, Li W, Zheng X, Li X. Genomic Insights Into Cadmium Resistance of a Newly Isolated, Plasmid-Free Cellulomonas sp. Strain Y8. Front Microbiol 2022; 12:784575. [PMID: 35154027 PMCID: PMC8832061 DOI: 10.3389/fmicb.2021.784575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Our current knowledge on bacterial cadmium (Cd) resistance is mainly based on the functional exploration of specific Cd-resistance genes. In this study, we carried out a genomic study on Cd resistance of a newly isolated Cellulomonas strain with a MIC of 5 mM Cd. Full genome of the strain, with a genome size of 4.47 M bp and GC-content of 75.35%, was obtained through high-quality sequencing. Genome-wide annotations identified 54 heavy metal-related genes. Four potential Cd-resistance genes, namely zntAY8, copAY8, HMTY8, and czcDY8, were subjected to functional exploration. Quantitative PCR determination of in vivo expression showed that zntAY8, copAY8, and HMTY8 were strongly Cd-inducible. Expression of the three inducible genes against time and Cd concentrations were further quantified. It is found that zntAY8 responded more strongly to higher Cd concentrations, while expression of copAY8 and HMTY8 increased over time at lower Cd concentrations. Heterologous expression of the four genes in Cd-sensitive Escherichia coli led to different impacts on hosts’ Cd sorption, with an 87% reduction by zntAY8 and a 3.7-fold increase by HMTY8. In conclusion, a Cd-resistant Cellulomonas sp. strain was isolated, whose genome harbors a diverse panel of metal-resistance genes. Cd resistance in the strain is not controlled by a dedicated gene alone, but by several gene systems collectively whose roles are probably time- and dose-dependent. The plasmid-free, high-GC strain Y8 may provide a platform for exploring heavy metal genomics of the Cellulomonas genus.
Collapse
Affiliation(s)
- Jinghao Chen
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Likun Wang
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Wenjun Li
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zheng
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Xiaofang Li
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- *Correspondence: Xiaofang Li,
| |
Collapse
|
16
|
Kim SJ, Brandizzi F. Advances in Cell Wall Matrix Research with a Focus on Mixed-Linkage Glucan. PLANT & CELL PHYSIOLOGY 2021; 62:1839-1846. [PMID: 34245308 DOI: 10.1093/pcp/pcab106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Mixed β(1,3;1,4)-linkage glucan (MLG) is commonly found in the monocot lineage, at particularly high levels in the Poaceae family, but also in the evolutionally distant genus, Equisetum. MLG has several properties that make it unique from other plant cell wall polysaccharides. It consists of β1,4-linked polymers of glucose interspersed with β1,3-linkages, but the presence of β1,3-linkages provides quite different physical properties compared to its closest form of the cell wall component, cellulose. The mechanisms of MLG biosynthesis have been investigated to understand whether single or multiple enzymes are required to build mixed linkages in the glucan chain. Currently, MLG synthesis by a single enzyme is supported by mutagenesis analyses of cellulose synthase-like F6, the major MLG synthase, but further investigation is needed to gather mechanistic insights. Because of transient accumulation of MLG in elongating cells and vegetative tissues, several hypotheses have been proposed to explain the role of MLG in the plant cell wall. Studies have been carried out to identify gene expression regulators during development and light cycles as well as enzymes involved in MLG organization in the cell wall. A role of MLG as a storage molecule in grains is evident, but the role of MLG in vegetative tissues is still not well understood. Characterization of a cell wall component is difficult due to the complex heterogeneity of the plant cell wall. However, as detailed in this review, recent exciting research has made significant impacts in the understanding of MLG biology in plants.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
17
|
Chen J, Zhang A, Xiang Z, Lu M, Huang P, Gong T, Pan Y, Lin Y, Zhou X, Li Y. EpsR Negatively Regulates Streptococcus mutans Exopolysaccharide Synthesis. J Dent Res 2021; 100:968-976. [PMID: 33749354 DOI: 10.1177/00220345211000668] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Streptococcus mutans is considered the primary etiological agent of human dental caries. Glucosyltransferases (Gtfs) from S. mutans play important roles in the formation of biofilm matrix and the development of cariogenic oral biofilm. Therefore, Gtfs are considered an important target to prevent the development of dental caries. However, the role of transcription factors in regulating gtf expression is not yet clear. Here, we identify a MarR (multiple antibiotic resistance regulator) family transcription factor named EpsR (exopolysaccharide synthesis regulator), which negatively regulates gtfB expression and exopolysaccharide (EPS) production in S. mutans. The epsR in-frame deletion strain grew slowly, aggregated more easily in the presence of dextran, and displayed different colony morphology and biofilm structure. Notably, epsR deletion resulted in altered 3-dimensional biofilm architecture, increased water-insoluble EPS production, and upregulated GtfB protein content and activity. In addition, global gene expression profiling revealed differences in the expression levels of 69 genes in which gtfB was markedly upregulated. The conserved DNA motif for EpsR binding was determined by electrophoretic mobility shift assay and DNase I footprinting assays. Moreover, analysis of β-galactosidase activity suggested that EpsR acted as a repressor and inhibited gtfB expression. Taken together, our findings indicate that EpsR is an important transcription factor that regulates gtfB expression and EPS production in S. mutans. These results add new aspects to the complexity of regulating the expression of genes involved in the cariogenicity of S. mutans, which might lead to novel strategies to prevent the formation of cariogenic biofilm that may favor diseases.
Collapse
Affiliation(s)
- J Chen
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - A Zhang
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Z Xiang
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - M Lu
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - P Huang
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - T Gong
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Pan
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Lin
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Zhou
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Li
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Zheng Y, Maruoka M, Nanatani K, Hidaka M, Abe N, Kaneko J, Sakai Y, Abe K, Yokota A, Yabe S. High cellulolytic potential of the Ktedonobacteria lineage revealed by genome-wide analysis of CAZymes. J Biosci Bioeng 2021; 131:622-630. [PMID: 33676867 DOI: 10.1016/j.jbiosc.2021.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022]
Abstract
Traditionally, filamentous fungi and actinomycetes are well-known cellulolytic microorganisms that have been utilized in the commercial production of cellulase enzyme cocktails for industrial-scale degradation of plant biomass. Noticeably, the Ktedonobacteria lineage (phylum Chloroflexi) with actinomycetes-like morphology was identified and exhibited diverse carbohydrate utilization or degradation abilities. In this study, we performed genome-wide profiling of carbohydrate-active enzymes (CAZymes) in the filamentous Ktedonobacteria lineage. Numerous CAZymes (153-290 CAZymes, representing 63-131 glycoside hydrolases (GHs) per genome), including complex mixtures of endo- and exo-cellulases, were predicted in 15 available Ktedonobacteria genomes. Of note, 4-28 CAZymes were predicted to be extracellular enzymes, whereas 3-29 CAZymes were appended with carbohydrate-binding modules (CBMs) that may promote their binding to insoluble carbohydrate substrates. This number far exceeded other Chloroflexi lineages and were comparable to the cellulolytic actinomycetes. Six multi-modular extracellular GHs were cloned from the thermophilic Thermosporothrix hazakensis SK20-1T strain and heterologously expressed. The putative endo-glucanases of ThazG5-1, ThazG9, and ThazG12 exhibited strong cellulolytic activity, whereas the putative exo-glucanases ThazG6 and ThazG48 formed weak but observable halos on carboxymethyl cellulose plates, indicating their potential biotechnological application. The purified recombinant ThazG12 had near-neutral pH (optimal 6.0), high thermostability (60°C), and broad specificity against soluble and insoluble polysaccharide substrates. It also represented described a novel thermostable bacterial β-1,4-glucanase in the GH12 family. Together, this research revealed the underestimated cellulolytic potential of the Ktedonobacteria lineage and highlighted its potential biotechnological utility as a promising microbial resource for the discovery of industrially useful cellulases.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan; Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Mayumi Maruoka
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan; Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Kei Nanatani
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Masafumi Hidaka
- Department of Molecular and Cell Biology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Naoki Abe
- Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Jun Kaneko
- Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Yasuteru Sakai
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan; Hazaka Plant Research Center, Kennan Eisei Kogyo Co., Ltd., 44 Aza Inariyama, Oaza Ashitate, Murata-cho, Shibata-gun, Miyagi 989-1311, Japan
| | - Keietsu Abe
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan; Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Akira Yokota
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan; Hazaka Plant Research Center, Kennan Eisei Kogyo Co., Ltd., 44 Aza Inariyama, Oaza Ashitate, Murata-cho, Shibata-gun, Miyagi 989-1311, Japan
| | - Shuhei Yabe
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan; Hazaka Plant Research Center, Kennan Eisei Kogyo Co., Ltd., 44 Aza Inariyama, Oaza Ashitate, Murata-cho, Shibata-gun, Miyagi 989-1311, Japan.
| |
Collapse
|