1
|
Matsugi A, Tsuzaki A, Jinai S, Okada Y, Mori N, Hosomi K. Cerebellar repetitive transcranial magnetic stimulation has no effect on contraction-induced facilitation of corticospinal excitability. PLoS One 2024; 19:e0310173. [PMID: 39485742 PMCID: PMC11530076 DOI: 10.1371/journal.pone.0310173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/27/2024] [Indexed: 11/03/2024] Open
Abstract
This study aimed to investigate whether the cerebellum contributes to contraction-induced facilitation (CIF) of contralateral corticospinal excitability. To this end, repetitive cerebellar transcranial magnetic stimulation (TMS) was used to test whether it modulates CIF. Overall, 20 healthy young individuals participated in the study. Single-pulse TMS was applied to the left primary motor cortex to induce motor-evoked potentials (MEP) on electromyography of the right first dorsal interosseous (FDI) muscle to test corticospinal excitability. This measurement was conducted during contraction (10% maximum voluntary contraction [MVC]) and rest (0% MVC) of the FDI muscle. CIF, cerebellar brain inhibition (CBI), cortical silent period (cSP), and resting motor threshold (rMT) were measured before and after low-frequency repetitive TMS (crTMS) of the right cerebellum to downregulate cerebellar output. The CIF (contraction/rest of the MEP), CBI (conditioned/unconditioned MEP) during contraction, cSP, and rMT were not affected by crTMS. At rest, CBI was decreased. These findings indicated that the primary motor cortex function for the increase in corticospinal excitability was not affected by crTMS. This study contributes to our understanding of the role of the cerebellum in motor control. Additionally, it may inform decision-making for the site of cerebellar ataxia treatment using non-invasive brain stimulation.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daitou City, Osaka, Japan
| | - Aki Tsuzaki
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daitou City, Osaka, Japan
| | - Soichi Jinai
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daitou City, Osaka, Japan
| | - Yohei Okada
- Neurorehabilitation Research Center of Kio University, Koryo-cho, Kitakatsuragi-gun, Nara, Japan
| | - Nobuhiko Mori
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Department of Neurosurgery, Toyonaka Municipal Hospital, Toyonaka City, Osaka, Japan
| |
Collapse
|
2
|
Zhao N, Tao J, Wong C, Wu JS, Liu J, Chen LD, Lee TMC, Xu Y, Chan CCH. Theta burst stimulation on the fronto-cerebellar connective network promotes cognitive processing speed in the simple cognitive task. Front Hum Neurosci 2024; 18:1387299. [PMID: 39314267 PMCID: PMC11417469 DOI: 10.3389/fnhum.2024.1387299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/21/2024] [Indexed: 09/25/2024] Open
Abstract
Background The fronto-cerebellar functional network has been proposed to subserve cognitive processing speed. This study aims to elucidate how the long-range frontal-to-cerebellar effective connectivity contributes to faster speed. Methods In total, 60 healthy participants were randomly allocated to three five-daily sessions of transcranial magnetic stimulation conditions, namely intermittent theta-burst stimulation (iTBS, excitatory), continuous theta-burst stimulation (CTBS, inhibitory), or a sham condition. The sites of the stimulations were the right pre-supplementary motor area (RpSMA), medial cerebellar vermis VI (MCV6), and vertex, respectively. Performances in two reaction time tasks were recorded at different time points. Results Post-stimulation speeds revealed marginal decreases in the simple but not complex task. Nevertheless, participants in the excitatory RpSMA and inhibitory MCV6 conditions showed direct and negative path effects on faster speeds compared to the sham condition in the simple reaction time (SRT) task (β = -0.320, p = 0.045 and β = -0.414, p = 0.007, respectively). These path effects were not observed in the SDMT task. Discussion RpSMA and MCV6 were involved in promoting the path effects of faster reaction times on simple cognitive task. This study offers further evidence to support their roles within the long-range frontal-to-cerebellar connectivity subserving cognitive processing speed. The enhancement effects, however, are likely limited to simple rather than complex mental operations.
Collapse
Affiliation(s)
- Ning Zhao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Rehabilitation, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Clive Wong
- Department of Psychology, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| | - Jing-song Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Li-dian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tatia M. C. Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yanwen Xu
- Department of Rehabilitation Medicine, Affiliated Hospital of Soochow University, Wuxi, China
| | - Chetwyn C. H. Chan
- Department of Psychology, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| |
Collapse
|
3
|
Matsugi A. Cerebellar TMS Induces Motor Responses Mediating Modulation of Spinal Excitability: A Literature Review. Brain Sci 2023; 13:brainsci13040531. [PMID: 37190496 DOI: 10.3390/brainsci13040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023] Open
Abstract
Since individuals with cerebellar lesions often exhibit hypotonia, the cerebellum may contribute to the regulation of muscle tone and spinal motoneuron pool excitability. Neurophysiological methods using transcranial magnetic stimulation (TMS) of the cerebellum have been recently proposed for testing the role of the cerebellum in spinal excitability. Under specific conditions, single-pulse TMS administered to the cerebellar hemisphere or vermis elicits a long-latency motor response in the upper or lower limb muscles and facilitates the H-reflex of the soleus muscle, indicating increased excitability of the spinal motoneuron pool. This literature review examined the methods and mechanisms by which cerebellar TMS modulates spinal excitability.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Osaka 574-0011, Japan
| |
Collapse
|
4
|
Matsugi A, Mori N, Hosomi K, Saitoh Y. Cerebellar repetitive transcranial magnetic stimulation modulates the motor learning of visually guided voluntary postural control task. Neurosci Lett 2022; 788:136859. [PMID: 36038031 DOI: 10.1016/j.neulet.2022.136859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
We investigated whether vermal cerebellar low-frequency repetitive transcranial magnetic stimulation (crTMS) affects motor learning of visually guided postural tracking training (VTT) using foot center of pressure (COP) as well as the stability and sensory contribution of upright standing. Twenty-one healthy volunteers participated (10 in the sham-crTMS group and 11 in the active-crTMS group). For VTT, participants stood on the force plate 1.5 m from the monitor on which the COP and target moved in a circle. Participants tracked the target with their own COP for 1 min, and 10 VTT sessions were conducted. The tracking error (TE) was compared between trials. Active- or sham-crTMS sessions were conducted prior to VTT. At baseline (before crTMS), pre-VTT (after crTMS), and post-VTT, the COP trajectory during upright static standing under four conditions (eyes, open/closed; surface, hard/rubber) was recorded. Comparison of the length of the COP trajectory or path and sensory-contribution-rate showed no significant difference between baseline and pre- and post-VTT. There was a significant decrease in TE in the sham-crTMS but not in the active-crTMS group. VTT and crTMS did not immediately affect the stability and sensory contribution of upright standing; however, crTMS immediately affected motor learning. The vermal cerebellum may contribute to motor learning of voluntary postural control.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Hojo 5-11-10, Daitou City, Osaka 574-0011, Japan.
| | - Nobuhiko Mori
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka 565-0871, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka 565-0871, Japan
| | - Youichi Saitoh
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Machikaneyama 1-3, Toyonaka City, Osaka 560-8531, Japan; Tokuyukai Rehabilitation Clinic, Shinsenri-nishimachi 2-24-18, Toyonaka City, Osaka 560-0083, Japan
| |
Collapse
|
5
|
Matsugi A, Nishishita S, Yoshida N, Tanaka H, Douchi S, Bando K, Tsujimoto K, Honda T, Kikuchi Y, Shimizu Y, Odagaki M, Nakano H, Okada Y, Mori N, Hosomi K, Saitoh Y. Impact of Repetitive Transcranial Magnetic Stimulation to the Cerebellum on Performance of a Ballistic Targeting Movement. CEREBELLUM (LONDON, ENGLAND) 2022:10.1007/s12311-022-01438-9. [PMID: 35781778 DOI: 10.1007/s12311-022-01438-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 12/30/2022]
Abstract
This study aimed to investigate the effects of repetitive transcranial magnetic stimulation (rTMS) of the cerebellum on changes in motor performance during a series of repetitive ballistic-targeting tasks. Twenty-two healthy young adults (n = 12 in the active-rTMS group and n = 10 in the sham rTMS group) participated in this study. The participants sat on a chair in front of a monitor and fixed their right forearms to a manipulandum. They manipulated the handle with the flexion/extension of the wrist to move the bar on the monitor. Immediately after a beep sound was played, the participant moved the bar as quickly as possible to the target line. After the first 10 repetitions of the ballistic-targeting task, active or sham rTMS (1 Hz, 900 pulses) was applied to the right cerebellum. Subsequently, five sets of 100 repetitions of this task were conducted. Participants in the sham rTMS group showed improved reaction time, movement time, maximum velocity of movement, and targeting error after repetition. However, improvements were inhibited in the active-rTMS group. Low-frequency cerebellar rTMS may disrupt motor learning during repetitive ballistic-targeting tasks. This supports the hypothesis that the cerebellum contributes to motor learning and motor-error correction in ballistic-targeting movements.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Hojo 5-11-10, Daitou city, Osaka, 574-0011, Japan.
| | - Satoru Nishishita
- Institute of Rehabilitation Science, Tokuyukai Medical Corporation, 3-11-1 Sakuranocho, Toyonaka City, Osaka, 560-0054, Japan.,Kansai Rehabilitation Hospital, 3-11-1 Sakuranocho, Toyonaka City, Osaka, 560-0054, Japan
| | - Naoki Yoshida
- Okayama Healthcare Professional University, Okayama, Japan
| | - Hiroaki Tanaka
- Department of Physical Medicine and Rehabilitation, Kansai Medical University Hirakata Hospital, Shinmachi 2-3-1, Hirakata City, Osaka, 573-1191, Japan.,Department of Physical Medicine and Rehabilitation, Kansai Medical University, Shinmachi 2-5-1, Hirakata City, Osaka, 573-1010, Japan
| | - Shinya Douchi
- Department of Rehabilitation, National Hospital Organization Kinki-chuo Chest Medical Center, 1180 Nagasone-Town, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Kyota Bando
- National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, 187-0031, Japan
| | - Kengo Tsujimoto
- National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, 187-0031, Japan
| | - Takeru Honda
- Basic Technology Research Center, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Yutaka Kikuchi
- Department of Rehabilitation for Intractable Neurological Disorders, Institute of Brain and Blood Vessels, Mihara Memorial Hospital, Ohtamachi366, Isesaki City, Gunma, 372-0006, Japan
| | - Yuto Shimizu
- Department of Rehabilitation for Intractable Neurological Disorders, Institute of Brain and Blood Vessels, Mihara Memorial Hospital, Ohtamachi366, Isesaki City, Gunma, 372-0006, Japan
| | - Masato Odagaki
- Maebashi Institute of Technology, Maebashi, Gunma Prefecture, Japan
| | - Hideki Nakano
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Yohei Okada
- Neurorehabilitation Research Center of Kio University, Nara, Koryo-cho, Kitakatsuragi-gun, 635-0832, Japan
| | - Nobuhiko Mori
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka, 565-0871, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka, 565-0871, Japan
| | - Youichi Saitoh
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Machikaneyama 1-3, Toyonaka City, Osaka, 560-8531, Japan.,Tokuyukai Rehabilitation Clinic, Shinsenrinishimachi 2-24-18, Toyonaka City, Osaka, 560-0083, Japan
| |
Collapse
|
6
|
Tamaru Y, Matsugi A. Eye Position Shifts Body Sway Under Foot Dominance Bias in the Absence of Visual Feedback. Front Neurol 2022; 13:835450. [PMID: 35432166 PMCID: PMC9007084 DOI: 10.3389/fneur.2022.835450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose The purpose of this study was to investigate whether information on extraocular muscle proprioception without visual information affects postural control. Methods Thirty-five healthy young volunteers participated in the study. Postural control outcomes included the center of pressure (CoP) for static standing, the total length of the sway of the CoP (LNG), and the sway area (SA), as well as the mean CoP in the mediolateral and anteroposterior directions. The following five eye-fixing positions were used: eye-up (E-Up), eye-down (E-Down), eye-right (E-Right), eye-left (E-Left), and eye-center (Center eye position). One-way ANOVA and Bonferroni correction was performed for statistical processing. Electrooculograms were recorded to detect eye orientation errors, measured with the eyes closed. Results The results of this study showed no significant difference between the LNG and SA results when comparing respective eye positions (E-up, E-down, E-right, E-left) relative to E-Center (control). However, the average CoP was shifted to the right at E-Up, E-Down, and E-Left. Conclusion These findings indicate that postural control may be affected by eye-body coordination depending on the position of the eyes, even without visual information.
Collapse
|
7
|
Matsugi A, Shiozaki T, Tanaka H. Vestibulo-Ocular Reflex Is Modulated by Noisy Galvanic Vestibular Stimulation. Front Neurol 2022; 13:826739. [PMID: 35250830 PMCID: PMC8893018 DOI: 10.3389/fneur.2022.826739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
We investigated whether noisy galvanic vestibular stimulation (nGVS) modulates the vestibulo-ocular reflex (VOR) and whether this effect is correlated with the effect of nGVS on body sway. Thirty healthy young adults participated. The video head impulse test (vHIT) was used to estimate the ratio of eye motion velocity/head motion velocity to VOR-gain. The gain 60 ms after the start of head motion (VOR-gain-60 ms) and regression slope (RS) (i.e., gain in eye and head motion; VOR-gain-RS) were calculated. The total path length of the foot center of pressure (COP-TL) during upright standing was calculated to estimate body sway. Noisy Galvanic Vestibular Stimulation at 0.2, 0.6, 1.2 mA, or sham stimulation (direct current: 0 mA) was delivered to the bilateral mastoid process in random order during vHIT and COP measurements. Application of nGVS at 0.2 mA significantly reduced VOR-gain-RS, while application of nGVS at 0.6 mA significantly increased COP-TL. Vestibulo-ocular reflex-gain-60 ms differed significantly between 0.2 and 1.2 mA. There was no significant correlation between COP-TL and VOR-related parameters. These findings suggest that nGVS at 0.2 mA inhibits the VOR, while nGVS at 0.6 mA increases body sway during upright standing, although there may be no relationship between the respective effects in healthy individuals.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daitou, Japan
- *Correspondence: Akiyoshi Matsugi
| | - Tomoyuki Shiozaki
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Japan
| | - Hiroaki Tanaka
- Department of Physical Medicine and Rehabilitation, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
8
|
Matsugi A, Nagino K, Shiozaki T, Okada Y, Mori N, Nakamura J, Douchi S, Oku K, Nagano K, Tamaru Y. No Impact of Stochastic Galvanic Vestibular Stimulation on Arterial Pressure and Heart Rate Variability in the Elderly Population. Front Hum Neurosci 2021; 15:646127. [PMID: 33679355 PMCID: PMC7925407 DOI: 10.3389/fnhum.2021.646127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 01/21/2021] [Indexed: 01/10/2023] Open
Abstract
Objective Noisy galvanic vestibular stimulation (nGVS) is often used to improve postural stability in disorders, such as neurorehabilitation montage. For the safe use of nGVS, we investigated whether arterial pressure (AP) and heart rate vary during static supine and slow whole-body tilt with random nGVS (0.4 mA, 0.1–640 Hz, gaussian distribution) in a healthy elderly population. Methods This study was conducted with a double-blind, sham-controlled, cross-over design. Seventeen healthy older adults were recruited. They were asked to maintain a static supine position on a bed for 10 min, and the bed was tilted up (TU) to 70 degrees within 30 s. After maintaining this position for 3 min, the bed was passively tilted down (TD) within 30 s. Real-nGVS or sham-nGVS was applied from 4 to 15 min. The time course of mean arterial pressure (MAP) and RR interval variability (RRIV) were analyzed to estimate the autonomic nervous activity. Result nGVS and/or time, including pre-/post-event (nGVS-start, TU, and TD), had no impact on MAP and RRIV-related parameters. Further, there was no evidence supporting the argument that nGVS induces pain, vertigo/dizziness, and uncomfortable feeling. Conclusion nGVS may not affect the AP and RRIV during static position and whole-body tilting or cause pain, vertigo/dizziness, and discomfort in the elderly.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Osaka, Japan
| | - Koji Nagino
- Faculty of Allied Health Sciences, Kansai University of Welfare Sciences, Osaka, Japan
| | - Tomoyuki Shiozaki
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Nara, Japan
| | - Yohei Okada
- Faculty of Health Science, Kio University, Nara, Japan.,Graduate School of Health Sciences, Kio University, Nara, Japan.,Neurorehabilitation Research Center of Kio University, Nara, Japan
| | - Nobuhiko Mori
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Junji Nakamura
- Faculty of Health Science, Kio University, Nara, Japan.,Department of Rehabilitation Medicine, Nishiyamato Rehabilitation Hospital, Nara, Japan
| | - Shinya Douchi
- Department of Rehabilitation, National Hospital Organization Wakayama Hospital, Wakayama, Japan
| | - Kosuke Oku
- Faculty of Rehabilitation, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Kiyoshi Nagano
- Faculty of Rehabilitation, Shijonawate Gakuen University, Osaka, Japan
| | - Yoshiki Tamaru
- Faculty of Rehabilitation, Shijonawate Gakuen University, Osaka, Japan
| |
Collapse
|
9
|
Matsugi A, Douchi S, Hasada R, Mori N, Okada Y, Yoshida N, Nishishita S, Hosomi K, Saitoh Y. Cerebellar Repetitive Transcranial Magnetic Stimulation and Noisy Galvanic Vestibular Stimulation Change Vestibulospinal Function. Front Neurosci 2020; 14:388. [PMID: 32410952 PMCID: PMC7198759 DOI: 10.3389/fnins.2020.00388] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/30/2020] [Indexed: 12/30/2022] Open
Abstract
Background The cerebellum strongly contributes to vestibulospinal function, and the modulation of vestibulospinal function is important for rehabilitation. As transcranial magnetic stimulation (TMS) and electrical stimulation may induce functional changes in neural systems, we investigated whether cerebellar repetitive TMS (crTMS) and noisy galvanic vestibular stimulation (nGVS) could modulate vestibulospinal response excitability. We also sought to determine whether crTMS could influence the effect of nGVS. Methods Fifty-nine healthy adults were recruited; 28 were randomly allocated to a real-crTMS group and 31 to a sham-crTMS group. The crTMS was conducted using 900 pulses at 1 Hz, while the participants were in a static position. After the crTMS, each participant was allocated to either a real-nGVS group or sham-nGVS group, and nGVS was delivered (15 min., 1 mA; 0.1–640 Hz) while patients were in a static position. The H-reflex ratio (with/without bilateral bipolar square wave pulse GVS), which reflects vestibulospinal excitability, was measured at pre-crTMS, post-crTMS, and post-nGVS. Results We found that crTMS alone and nGVS alone have no effect on H-reflex ratio but that the effect of nGVS was obtained after crTMS. Conclusion crTMS and nGVS appear to act as neuromodulators of vestibulospinal function.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daito, Japan
| | - Shinya Douchi
- Department of Rehabilitation, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Rikiya Hasada
- Department of Rehabilitation, Nagahara Hospital, Higasiosaka, Japan
| | - Nobuhiko Mori
- Department of Neuromodulation and Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yohei Okada
- Faculty of Health Sciences, Kio University, Koryo, Japan.,Neurorehabilitation Research Center, Kio University, Koryo, Japan
| | - Naoki Yoshida
- Institute of Rehabilitation Science, Tokuyukai Medical Corporation, Toyonaka, Japan.,Kansai Rehabilitation Hospital, Toyonaka, Japan
| | - Satoru Nishishita
- Institute of Rehabilitation Science, Tokuyukai Medical Corporation, Toyonaka, Japan.,Kansai Rehabilitation Hospital, Toyonaka, Japan
| | - Koichi Hosomi
- Department of Neuromodulation and Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Youichi Saitoh
- Department of Neuromodulation and Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
10
|
Matsugi A, Douchi S, Suzuki K, Oku K, Mori N, Tanaka H, Nishishita S, Bando K, Kikuchi Y, Okada Y. Cerebellar Transcranial Magnetic Stimulation Reduces the Silent Period on Hand Muscle Electromyography During Force Control. Brain Sci 2020; 10:brainsci10020063. [PMID: 31991581 PMCID: PMC7071382 DOI: 10.3390/brainsci10020063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 01/29/2023] Open
Abstract
This study aimed to investigate whether cerebellar transcranial magnetic stimulation (C-TMS) affected the cortical silent period (cSP) induced by TMS over the primary motor cortex (M1) and the effect of interstimulus interval (ISI) on cerebellar conditioning and TMS to the left M1 (M1-TMS). Fourteen healthy adult participants were instructed to control the abduction force of the right index finger to 20% of the maximum voluntary contraction. M1-TMS was delivered during this to induce cSP on electromyograph of the right first dorsal interosseous muscle. TMS over the right cerebellum (C-TMS) was conducted prior to M1-TMS. In the first experiment, M1-TMS intensity was set to 1 or 1.3 × resting motor threshold (rMT) with 20-ms ISI. In the second experiment, the intensity was set to 1 × rMT with ISI of 0, 10, 20, 30, 40, 50, 60, 70, or 80 ms, and no-C-TMS trials were inserted. In results, cSP was significantly shorter in 1 × rMT condition than in 1.3 × rMT by C-TMS, and cSP was significantly shorter for ISI of 20–40 ms than for the no-C-TMS condition. Further, motor evoked potential for ISI40-60 ms were significantly reduced than that for ISI0. Thus, C-TMS may reduce cSP induced by M1-TMS with ISI of 20–40 ms.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Hojo 5-11-10, Daitou city, Osaka 574-0011, Japan
- Correspondence: ; Tel.: +81-72-863-5043; Fax: +81-72-863-5022
| | - Shinya Douchi
- Department of Rehabilitation, National Hospital Organization Kyoto Medical Center, Hukakusamukaihatacyo1-1, Husimi-ku Kyoto City, Kyoto 612-8555, Japan
| | - Kodai Suzuki
- Division of Rehabilitation, Hanna Central Hospital, Ikoma, Nara 630-0243, Japan
| | - Kosuke Oku
- Faculty of Rehabilitation, Shijonawate Gakuen University, Hojo 5-11-10, Daitou city, Osaka 574-0011, Japan
| | - Nobuhiko Mori
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hiroaki Tanaka
- Graduate School of Health Sciences, Kio University, 4-2-2 Umami-naka, Koryo-cho, Kitakatsuragi-gun, Nara 635-0832, Japan
- Department of Rehabilitation, Baba memorial Hospital, Nishiku Hamaderahunaotyohigashi 4-244, Sakai City, Osaka 592-8555, Japan
| | - Satoru Nishishita
- Institute of Rehabilitation Science, Tokuyukai medical corporation, 3-11-1 Sakuranocho, Toyonaka City, Osaka 560-0054, Japan
- Kansai Rehabilitation Hospital, 3-11-1 Sakuranocho, Toyonaka City, Osaka 560-0054, Japan
| | - Kyota Bando
- National Center Hospital, National Center of Neurology and Psychiatry, Kodaira 187-0031, Japan
| | - Yutaka Kikuchi
- Department of Rehabilitation for Intractable Neurological Disorders, Institute of Brain and Blood Vessels Mihara Memorial Hospital, Ohtamachi366, Isesaki City, Gunma 372-0006, Japan
| | - Yohei Okada
- Graduate School of Health Sciences, Kio University, 4-2-2 Umami-naka, Koryo-cho, Kitakatsuragi-gun, Nara 635-0832, Japan
- Neurorehabilitation Research Center of Kio University, Koryo-cho, Kitakatsuragi-gun, Nara 635-0832, Japan
| |
Collapse
|