1
|
Ishida JK, Costa EC. What we know so far and what we can expect next: A molecular investigation of plant parasitism. Genet Mol Biol 2024; 47Suppl 1:e20240051. [PMID: 39348487 PMCID: PMC11441458 DOI: 10.1590/1678-4685-gmb-2024-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
The review explores parasitic plants' evolutionary success and adaptability, highlighting their widespread occurrence and emphasizing the role of an invasive organ called haustorium in nutrient acquisition from hosts. It discusses the genetic and physiological adaptations that facilitate parasitism, including horizontal gene transfer, and the impact of environmental factors like climate change on these relationships. It addresses the need for further research into parasitic plants' genomes and interactions with their hosts to better predict environmental changes' impacts.
Collapse
Affiliation(s)
- Juliane Karine Ishida
- Universidade Federal de Minas Gerias (UFMG), Instituto de Ciências Biológicas, Departamento de Botânica, Belo Horizonte, MG, Brazil
| | - Elaine Cotrim Costa
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas, Rio Grande do Sul, RS, Brazil
| |
Collapse
|
2
|
Zhou SYD, Lie Z, Liu X, Zhu YG, Peñuelas J, Neilson R, Su X, Liu Z, Chu G, Meng Z, Yan J, Liu J. Distinct patterns of soil bacterial and fungal community assemblages in subtropical forest ecosystems under warming. GLOBAL CHANGE BIOLOGY 2023; 29:1501-1513. [PMID: 36448266 DOI: 10.1111/gcb.16541] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/18/2022] [Indexed: 05/26/2023]
Abstract
Climate change globally affects soil microbial community assembly across ecosystems. However, little is known about the impact of warming on the structure of soil microbial communities or underlying mechanisms that shape microbial community composition in subtropical forest ecosystems. To address this gap, we utilized natural variation in temperature via an altitudinal gradient to simulate ecosystem warming. After 6 years, microbial co-occurrence network complexity increased with warming, and changes in their taxonomic composition were asynchronous, likely due to contrasting community assembly processes. We found that while stochastic processes were drivers of bacterial community composition, warming led to a shift from stochastic to deterministic drivers in dry season. Structural equation modelling highlighted that soil temperature and water content positively influenced soil microbial communities during dry season and negatively during wet season. These results facilitate our understanding of the response of soil microbial communities to climate warming and may improve predictions of ecosystem function of soil microbes in subtropical forests.
Collapse
Affiliation(s)
- Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Zhiyang Lie
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xujun Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Josep Peñuelas
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, Barcelona, Spain
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, Scotland, UK
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Zhanfeng Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guowei Chu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ze Meng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Junhua Yan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Zhang H, Florentine S, Tennakoon KU. The Angiosperm Stem Hemiparasitic Genus Cassytha (Lauraceae) and Its Host Interactions: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:864110. [PMID: 35734256 PMCID: PMC9208266 DOI: 10.3389/fpls.2022.864110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Cassytha, also known as laurel dodder or love vine, is a stem hemiparasite of the Lauraceae family. It has long been used for medicinal purposes in many countries and has increasingly influenced agricultural and natural ecosystems by its effects on a wide range of host species. Previous studies have focused on the taxonomy and evolutionary position of different Cassytha, with the pan-tropical species Cassytha filiformis being the most widely studied. However, Cassytha-host interactions have never been reviewed, which is an essential issue related to the understanding of mechanisms underlying plant hemiparasitic and the assessment of benefits and damage caused by aerial parasitic plants. This review explores the parasitic habits, worldwide distribution, and host range of Cassytha, and examines its impacts on the biology of host plants and the overall influence of environmental changes on Cassytha-host associations. We also comment on areas of future research directions that require to better understanding Cassytha-host interactions. It appeared that some traits, such as flowering phenology, facilitated Cassytha's widespread distribution and successful parasitism and that Cassytha preferred woody species rather than herbaceous species as a host, and preferred species from certain families as hosts, such as Fabaceae and Myrtaceae. Cassytha often decreased biomass and impacted the physiology of host species and global environmental changes seemed to intensify the negative impacts of Cassytha on their hosts. Cassytha was not only a noxious weed, but can also function as a biocontrol agent to mitigate alien plant invasion.
Collapse
Affiliation(s)
- Hongxiang Zhang
- Institute of Innovation, Science and Sustainability, Future Regions Research Centre, Federation University, Berwick, VIC, Australia
- Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Singarayer Florentine
- Institute of Innovation, Science and Sustainability, Future Regions Research Centre, Federation University, Ballarat, VIC, Australia
| | - Kushan U. Tennakoon
- Institute of Innovation, Science and Sustainability, Future Regions Research Centre, Federation University, Berwick, VIC, Australia
| |
Collapse
|
4
|
Serivichyaswat PT, Bartusch K, Leso M, Musseau C, Iwase A, Chen Y, Sugimoto K, Quint M, Melnyk CW. High temperature perception in leaves promotes vascular regeneration and graft formation in distant tissues. Development 2022; 149:274539. [PMID: 35217857 PMCID: PMC8959136 DOI: 10.1242/dev.200079] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
ABSTRACT
Cellular regeneration in response to wounding is fundamental to maintain tissue integrity. Various internal factors including hormones and transcription factors mediate healing, but little is known about the role of external factors. To understand how the environment affects regeneration, we investigated the effects of temperature upon the horticulturally relevant process of plant grafting. We found that elevated temperatures accelerated vascular regeneration in Arabidopsis thaliana and tomato grafts. Leaves were crucial for this effect, as blocking auxin transport or mutating PHYTOCHROME INTERACTING FACTOR 4 (PIF4) or YUCCA2/5/8/9 in the cotyledons abolished the temperature enhancement. However, these perturbations did not affect grafting at ambient temperatures, and temperature enhancement of callus formation and tissue adhesion did not require PIF4, suggesting leaf-derived auxin specifically enhanced vascular regeneration in response to elevated temperatures. We also found that elevated temperatures accelerated the formation of inter-plant vascular connections between the parasitic plant Phtheirospermum japonicum and host Arabidopsis, and this effect required shoot-derived auxin from the parasite. Taken together, our results identify a pathway whereby local temperature perception mediates long distance auxin signaling to modify regeneration, grafting and parasitism.
This article has an associated ‘The people behind the papers’ interview.
Collapse
Affiliation(s)
- Phanu T. Serivichyaswat
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
| | - Kai Bartusch
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, 8092 Zürich, Switzerland
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, 06120 Halle (Saale), Germany
| | - Martina Leso
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
| | - Constance Musseau
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Yu Chen
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, Tokyo 113-8654, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, Tokyo 113-8654, Japan
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, 06120 Halle (Saale), Germany
| | - Charles W. Melnyk
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
| |
Collapse
|
5
|
Nabity PD, Barron-Gafford GA, Whiteman NK. Intraspecific competition for host resources in a parasite. Curr Biol 2021; 31:1344-1350.e3. [PMID: 33626328 DOI: 10.1016/j.cub.2021.01.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/13/2020] [Accepted: 01/12/2021] [Indexed: 11/28/2022]
Abstract
Intraspecific competition among parasites should, in theory, increase virulence, but we lack clear evidence of this from nature.1-3 Parasitic plants, which are sessile and acquire carbon-based resources through both autotrophy (photosynthesis) and heterotrophy (obtaining carbon from the host), provide a unique opportunity to experimentally study the role of intraspecific competition for nutrients in shaping the biology of both parasite and host.4-6 Here, we manipulated the spatial position of naturally occurring individuals of desert mistletoe (Phoradendron californicum), a xylem hemiparasite, by removing parasites from co-infected branches of a common nitrogen-fixing host, velvet mesquite (Prosopsis velutina), in the Sonoran Desert. We measured physiological performance of both host and parasite individuals under differing competitive environments-parasite location along the xylem stream-through time. Performance was determined by measuring resource availability and use, given that resource demand changed with competitor removal and monsoon-driven amelioration of seasonal drought. Our principal finding was that intraspecific competition exists for xylem resources between mistletoe individuals, including host carbon. Host performance and seasonal climate variation altered the strength of competition and virulence. Hemiparasitic desert mistletoes demonstrated high heterotrophy, yet experimental removals revealed density- and location-dependent effects on the host through feedbacks that reduced mistletoe autotrophy and improved resource availability for the remaining mistletoe individual. Trophic flexibility tempered intraspecific competition for resources and reduced virulence. Mistletoe co-infections might therefore attenuate virulence to maintain access to resources in particularly stressful ecological environments. In summary, experimental field manipulations revealed evidence for intraspecific competition in a parasite species.
Collapse
Affiliation(s)
- Paul D Nabity
- Department of Botany and Plant Sciences, University of California, Riverside, 900 University Avenue, Riverside, CA 92125, USA.
| | - Greg A Barron-Gafford
- School of Geography, Development, and the Environment, University of Arizona, PO Box 210137, Tucson, AZ 85721, USA
| | - Noah K Whiteman
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|