1
|
Lange T, Maron L, Weber C, Biedenweg D, Schlüter R, Endlich N. Efficient delivery of small RNAs to podocytes in vitro by direct exosome transfection. J Nanobiotechnology 2025; 23:373. [PMID: 40410889 PMCID: PMC12100849 DOI: 10.1186/s12951-025-03426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 05/01/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Podocytes are a crucial component of the glomerular filtration barrier, and changes in their 3D structure contribute to over 80% of chronic kidney disease (CKD) cases. Exosomal small RNAs play a key role in cell-cell communication in CKD and may serve as nanocarriers for delivering small RNAs into podocytes. However, the uptake of exosomal cargo by podocytes remains poorly understood. This study explores the use of isolated exosomes, directly transfected with fluorescently-labeled small RNAs, for tracking and delivering small RNAs to cultured podocytes. METHODS Exosomes were isolated from immortalized murine podocytes and transfected with Cy3-labeled siRNA and miRNA controls using the ExoFect siRNA/miRNA Transfection Kit. We characterized the transfected exosomes via transmission electron microscopy (TEM) and Western blot for exosomal markers CD9 and TSG101. Subsequently, we co-cultured these exosomes with podocytes and used confocal laser-scanning microscopy (cLSM), and structured illumination microscopy (SIM) to visualize cargo uptake, confirmed through flow cytometry, imaging flow cytometry and immunofluorescence staining for Rab5, Rab7, and CD9. The isolated exosomes were also transfected with pre-miR-21 and filamin A (FlnA)-siRNAs before being co-cultured with podocytes. We confirmed the efficiency of transfection and knockdown using RT-qPCR, Western blotting, and immunofluorescence staining. RESULTS TEM revealed that the exosomes maintained a consistent shape and size of approximately 20 nm posttransfection and exhibited a stable expression of CD9 and TSG101. Flow cytometry and immunofluorescence imaging showed that podocytes take up Cy3-labeled exosomal miRNAs and siRNAs time-dependently, utilizing various mechanisms, including encapsulation within vesicular structures, endocytosis and free distribution within the cells. Transfection of exosomes with FlnA-siRNAs resulted in a significant 2.8-fold reduction of filamin A expression in co-cultured podocytes, while pre-miR-21-transfected exosomes led to a remarkable 338-fold increase in mature miR-21 levels. CONCLUSIONS These findings demonstrate that direct exosome transfection with fluorescently-labeled small RNAs is an effective method for tracking exosomal cargo in podocytes. This study is the first to show that directly transfected exosomes can deliver small RNAs to podocytes in vitro, suggesting their potential as RNA carriers for therapeutic strategies in more complex settings.
Collapse
Affiliation(s)
- Tim Lange
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Friedrich-Loeffler-Str. 23c, 17487, Greifswald, Germany
| | - Luzia Maron
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Friedrich-Loeffler-Str. 23c, 17487, Greifswald, Germany
| | - Claudia Weber
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Friedrich-Loeffler-Str. 23c, 17487, Greifswald, Germany
| | - Doreen Biedenweg
- Institute for Physics, University of Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, Greifswald of University, Greifswald, Germany
| | - Nicole Endlich
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Friedrich-Loeffler-Str. 23c, 17487, Greifswald, Germany.
| |
Collapse
|
2
|
Yan Q, Liu M, Mao J, Zhao Z, Wang B. Extracellular Vesicles in Acute Kidney Injury: Mechanisms, Biomarkers, and Therapeutic Potential. Int J Nanomedicine 2025; 20:6271-6288. [PMID: 40400780 PMCID: PMC12094478 DOI: 10.2147/ijn.s519345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 05/10/2025] [Indexed: 05/23/2025] Open
Abstract
Acute kidney injury (AKI) has a high morbidity and mortality rate but can only be treated with supportive therapy in most cases. The diagnosis of AKI is mainly based on serum creatinine level and urine volume, which cannot detect kidney injury sensitive and timely. Therefore, new diagnostic and therapeutic molecules of AKI are being actively explored. Extracellular vesicles (EVs), secreted by almost all cells, can originate from different parts of the kidney and mediate intercellular communication between various cell types of nephrons. At present, numerous successful EV-based biomarker discoveries and treatments for AKI have been made, such as the confirmed diagnostic role of urine-derived EVs in AKI and the established therapeutic role of mesenchymal stem cell-derived EVs in AKI have been confirmed; however, these related studies lack a full discussion. In this review, we summarize the latest progression in the profound understanding of the functional role of EVs in AKI caused by various etiologies in recent years and provide new insights into EVs as viable biomarkers and therapeutic molecules for AKI patients. Furthermore, the current challenges and prospects of this research area are briefly discussed, presenting a comprehensive overview of the growing foregrounds of EVs in AKI.
Collapse
Affiliation(s)
- Qianqian Yan
- Nephrology Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Mengyuan Liu
- Department of Anesthesiology, Air Force Hospital of Western Theater Command, PLA, Chengdu, 610011, People’s Republic of China
| | - Jinyan Mao
- Department of Anesthesiology, Air Force Hospital of Western Theater Command, PLA, Chengdu, 610011, People’s Republic of China
| | - Zihao Zhao
- Nephrology Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
- Department of Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Bo Wang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
3
|
Qian C, Dong G, Yang C, Zheng W, Zhong C, Shen Q, Lu Y, Zhao Y. Broadening horizons: molecular mechanisms and disease implications of endothelial-to-mesenchymal transition. Cell Commun Signal 2025; 23:16. [PMID: 39789529 PMCID: PMC11720945 DOI: 10.1186/s12964-025-02028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
Endothelial-mesenchymal transition (EndMT) is defined as an important process of cellular differentiation by which endothelial cells (ECs) are prone to lose their characteristics and transform into mesenchymal cells. During EndMT, reduced expression of endothelial adhesion molecules disrupts intercellular adhesion, triggering cytoskeletal reorganization and mesenchymal transition. Numerous studies have proved that EndMT is a multifaceted biological event driven primarily by cytokines such as TGF-β, TNF-α, and IL-1β, alongside signaling pathways like WNT, Smad, MEK-ERK, and Notch. Nevertheless, the exact roles of EndMT in complicated diseases have not been comprehensively reviewed. In this review, we summarize the predominant molecular regulatory mechanisms and signaling pathways that contribute to the development of EndMT, as well as highlight the contributions of a series of imperative non-coding RNAs in curbing the initiation of EndMT. Furthermore, we discuss the significant impact of EndMT on worsening vasculature-related diseases, including cancer, cardiovascular diseases, atherosclerosis, pulmonary vascular diseases, diabetes-associated fibrotic conditions, and cerebral cavernous malformation, providing the implications that targeting EndMT holds promise as a therapeutic strategy to mitigate disease progression.
Collapse
Affiliation(s)
- Cheng Qian
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guanglu Dong
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chunmei Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weiwei Zheng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chongjin Zhong
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiuhong Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yang Zhao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
4
|
Lawson JS, Williams TL. Extracellular vesicles in kidney disease - A veterinary perspective. Vet J 2024; 308:106247. [PMID: 39276847 DOI: 10.1016/j.tvjl.2024.106247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Extracellular vesicles (EVs) are membrane bound vesicles secreted from cells into the extracellular space which have an emerging role in both normal kidney physiology and the pathophysiology of kidney injury, predominantly as mediators of intercellular communication. EVs contain proteins and RNA cargo which reflect their cell of origin and can be isolated from the urine of cats and dogs. The majority of urinary EVs (uEVs) originate from the kidney, and both the uEV proteome and transcriptome have been investigated as sources of biomarkers of kidney disease. In addition to their possible diagnostic role, EVs may also have therapeutic potential, and veterinary species have been used as models to demonstrate the efficacy of exogenous EVs derived from mesenchymal stromal cells in the treatment of acute kidney injury. Furthermore, bioengineered EVs may represent a novel vehicle for the administration of drugs or therapeutic nucleic acids in kidney disease. This article reviews the biological functions of EVs within the kidney, techniques for their isolation, and their potential use as biomarkers and therapeutic agents, with particular focus on the potential significance to veterinary patients.
Collapse
Affiliation(s)
- Jack S Lawson
- The Royal Veterinary College, Hawkshead Ln, Brookmans Park, Hatfield AL9 7TA, UK.
| | - Timothy L Williams
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
5
|
Shi L, Zeng H, An Z, Chen W, Shan Y, Ji C, Qian H. Extracellular vesicles: Illuminating renal pathophysiology and therapeutic frontiers. Eur J Pharmacol 2024; 978:176720. [PMID: 38880217 DOI: 10.1016/j.ejphar.2024.176720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
Extracellular vesicles (EVs) are minute sacs released by cells into the extracellular milieu, harboring an array of biomolecules including proteins, nucleic acids, and lipids. Notably, a large number of studies have demonstrated the important involvement of EVs in both physiological and pathological aspects of renal function. EVs can facilitate communication between different renal cells, but it is important to recognize their dual role: they can either transmit beneficial information or lead to renal damage and worsening of existing conditions. The composition of EVs in the context of the kidneys offers valuable insights into the intricate mechanisms underlying specific renal functions or disease states. In addition, mesenchymal stem cell-derived EVs have the potential to alleviate acute and chronic kidney diseases. More importantly, the innate nanoparticle properties of EVs, coupled with their engineering potential, make them effective tools for drug delivery and therapeutic intervention. In this review, we focus on the intricate biological functions of EVs in the kidney. In addition, we explore the emerging role of EVs as diagnostic tools and innovative therapeutic agents in a range of renal diseases.
Collapse
Affiliation(s)
- Linru Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Houcheng Zeng
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhongwu An
- Department of Laboratory, Lianyungang Oriental Hospital, Lianyungang, 222042, Jiangsu, China
| | - Wenya Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yunjie Shan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
6
|
van Zonneveld AJ, Zhao Q, Rotmans JI, Bijkerk R. Circulating non-coding RNAs in chronic kidney disease and its complications. Nat Rev Nephrol 2023; 19:573-586. [PMID: 37286733 DOI: 10.1038/s41581-023-00725-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/09/2023]
Abstract
Post-transcriptional regulation by non-coding RNAs (ncRNAs) can modulate the expression of genes involved in kidney physiology and disease. A large variety of ncRNA species exist, including microRNAs, long non-coding RNAs, piwi-interacting RNAs, small nucleolar RNAs, circular RNAs and yRNAs. Despite early assumptions that some of these species may exist as by-products of cell or tissue injury, a growing body of literature suggests that these ncRNAs are functional and participate in a variety of processes. Although they function intracellularly, ncRNAs are also present in the circulation, where they are carried by extracellular vesicles, ribonucleoprotein complexes or lipoprotein complexes such as HDL. These systemic, circulating ncRNAs are derived from specific cell types and can be directly transferred to a variety of cells, including endothelial cells of the vasculature and virtually any cell type in the kidney, thereby affecting the function of the host cell and/or its response to injury. Moreover, chronic kidney disease itself, as well as injury states associated with transplantation and allograft dysfunction, is associated with a shift in the distribution of circulating ncRNAs. These findings may provide opportunities for the identification of biomarkers with which to monitor disease progression and/or the development of therapeutic interventions.
Collapse
Affiliation(s)
- Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Qiao Zhao
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands.
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
7
|
Brock S, Jackson DB, Soldatos TG, Hornischer K, Schäfer A, Diella F, Emmert MY, Hoerstrup SP. Whole patient knowledge modeling of COVID-19 symptomatology reveals common molecular mechanisms. FRONTIERS IN MOLECULAR MEDICINE 2023; 2:1035290. [PMID: 39086962 PMCID: PMC11285600 DOI: 10.3389/fmmed.2022.1035290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 08/02/2024]
Abstract
Infection with SARS-CoV-2 coronavirus causes systemic, multi-faceted COVID-19 disease. However, knowledge connecting its intricate clinical manifestations with molecular mechanisms remains fragmented. Deciphering the molecular basis of COVID-19 at the whole-patient level is paramount to the development of effective therapeutic approaches. With this goal in mind, we followed an iterative, expert-driven process to compile data published prior to and during the early stages of the pandemic into a comprehensive COVID-19 knowledge model. Recent updates to this model have also validated multiple earlier predictions, suggesting the importance of such knowledge frameworks in hypothesis generation and testing. Overall, our findings suggest that SARS-CoV-2 perturbs several specific mechanisms, unleashing a pathogenesis spectrum, ranging from "a perfect storm" triggered by acute hyper-inflammation, to accelerated aging in protracted "long COVID-19" syndromes. In this work, we shortly report on these findings that we share with the community via 1) a synopsis of key evidence associating COVID-19 symptoms and plausible mechanisms, with details presented within 2) the accompanying "COVID-19 Explorer" webserver, developed specifically for this purpose (found at https://covid19.molecularhealth.com). We anticipate that our model will continue to facilitate clinico-molecular insights across organ systems together with hypothesis generation for the testing of potential repurposing drug candidates, new pharmacological targets and clinically relevant biomarkers. Our work suggests that whole patient knowledge models of human disease can potentially expedite the development of new therapeutic strategies and support evidence-driven clinical hypothesis generation and decision making.
Collapse
Affiliation(s)
| | | | - Theodoros G. Soldatos
- Molecular Health GmbH, Heidelberg, Germany
- SRH Hochschule, University of Applied Science, Heidelberg, Germany
| | | | | | | | - Maximilian Y. Emmert
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Gu D, Ding Y, Jiang X, Shen B, Musante L, Holthofer H, Zou H. Diabetes with kidney injury may change the abundance and cargo of urinary extracellular vesicles. Front Endocrinol (Lausanne) 2023; 14:1085133. [PMID: 37077361 PMCID: PMC10107408 DOI: 10.3389/fendo.2023.1085133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Urinary extracellular vesicles (uEVs) are derived from epithelia facing the renal tubule lumen in the kidney and urogenital tract; they may carry protein biomarkers of renal dysfunction and structural injury. However, there are scarce studies focusing on uEVs in diabetes with kidney injury. MATERIALS AND METHODS A community-based epidemiological survey was performed, and the participants were randomly selected for our study. uEVs were enriched by dehydrated dialysis method, quantified by Coomassie Bradford protein assay, and adjusted by urinary creatinine (UCr). Then, they identified by transmission electron microscopy (TEM), nanoparticle track analysis (NTA), and western blot of tumor susceptibility gene 101. RESULTS Decent uEVs with a homogeneous distribution were finally obtained, presenting a membrane-encapsulated structure like cup-shaped or roundish under TEM, having active Brownian motion, and presenting the main peak between 55 and 110 nm under NTA. The Bradford protein assay showed that the protein concentrations of uEVs were 0.02 ± 0.02, 0.04 ± 0.05, 0.05 ± 0.04, 0.07 ± 0.08, and 0.11 ± 0.15 μg/mg UCr, respectively, in normal controls and in prediabetes, diabetes with normal proteinuria, diabetes with microalbuminuria, and diabetes with macroproteinuria groups after adjusting the protein concentration with UCr by calculating the vesicles-to-creatinine ratio. CONCLUSION The protein concentration of uEVs in diabetes with kidney injury increased significantly than the normal controls before and after adjusting the UCr. Therefore, diabetes with kidney injury may change the abundance and cargo of uEVs, which may be involved in the physiological and pathological changes of diabetes.
Collapse
Affiliation(s)
- Dongfeng Gu
- Department of Nephrology and Transplantation Center, Zhengzhou People’s Hospital, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yanan Ding
- Department of Nephrology and Transplantation Center, Zhengzhou People’s Hospital, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin Jiang
- Department of Nephrology and Transplantation Center, Zhengzhou People’s Hospital, Henan University of Chinese Medicine, Zhengzhou, China
| | - Beili Shen
- Department of Nephrology and Transplantation Center, Zhengzhou People’s Hospital, Henan University of Chinese Medicine, Zhengzhou, China
| | - Luca Musante
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Harry Holthofer
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hequn Zou
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
- *Correspondence: Hequn Zou,
| |
Collapse
|
9
|
Dong R, Xu Y. Glomerular cell cross talk in diabetic kidney diseases. J Diabetes 2022; 14:514-523. [PMID: 35999686 PMCID: PMC9426281 DOI: 10.1111/1753-0407.13304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetic kidney disease (DKD) is a severe microvascular complication of diabetes mellitus. It is the leading inducement of end-stage renal disease (ESRD), and its global incidence has been increasing at an alarming rate. The strict control of blood pressure and blood glucose can delay the progression of DKD, but intensive treatment is challenging to maintain. Studies to date have failed to find a complete cure. The glomerulus's alterations and injuries play a pivotal role in the initiation and development of DKD. A wealth of data indicates that the interdependent relationship between resident cells in the glomerulus will provide clues to the mechanism of DKD and new ways for therapeutic intervention. This review summarizes the significant findings of glomerular cell cross talk in DKD, focusing on cellular signaling pathways, regulators, and potential novel avenues for treating progressive DKD.
Collapse
Affiliation(s)
- Ruixue Dong
- Faculty of Pharmacy, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
| | - Youhua Xu
- Faculty of Pharmacy, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
- Department of Endocrinology, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, People's Republic of China
| |
Collapse
|
10
|
Abstract
Extracellular vesicles are released by the majority of cell types and circulate in body fluids. They function as a long-distance cell-to-cell communication mechanism that modulates the gene expression profile and fate of target cells. Increasing evidence has established a central role of extracellular vesicles in kidney physiology and pathology. Urinary extracellular vesicles mediate crosstalk between glomerular and tubular cells and between different segments of the tubule, whereas circulating extracellular vesicles mediate organ crosstalk and are involved in the amplification of kidney damage and inflammation. The molecular profile of extracellular vesicles reflects the type and pathophysiological status of the originating cell so could potentially be exploited for diagnostic and prognostic purposes. In addition, robust preclinical data suggest that administration of exogenous extracellular vesicles could promote kidney regeneration and reduce inflammation and fibrosis in acute and chronic kidney diseases. Stem cells are thought to be the most promising source of extracellular vesicles with regenerative activity. Extracellular vesicles are also attractive candidates for drug delivery and various engineering strategies are being investigated to alter their cargo and increase their efficacy. However, rigorous standardization and scalable production strategies will be necessary to enable the clinical application of extracellular vesicles as potential therapeutics. In this Review, the authors discuss the roles of extracellular vesicles in kidney physiology and disease as well as the beneficial effects of stem cell-derived extracellular vesicles in preclinical models of acute kidney injury and chronic kidney disease. They also highlight current and future clinical applications of extracellular vesicles in kidney diseases.
Urinary extracellular vesicles have roles in intra-glomerular, glomerulo-tubular and intra-tubular crosstalk, whereas circulating extracellular vesicles might mediate organ crosstalk; these mechanisms could amplify kidney damage and contribute to disease progression. Urinary extracellular vesicles could potentially be analysed using multiplex diagnostic platforms to identify pathological processes and the originating cell types; technological advances including single extracellular vesicle analysis might increase the specificity of bulk analysis of extracellular vesicle preparations. Robust standardization and validation in large patient cohorts are required to enable clinical application of extracellular vesicle-based biomarkers. Stem cell-derived extracellular vesicles have been shown to improve renal recovery, limit progression of injury and reduce fibrosis in animal models of acute kidney injury and chronic kidney disease. Various engineering approaches can be used to load extracellular vesicles with therapeutic molecules and increase their delivery to the kidney. A small clinical trial that tested the efficacy of mesenchymal stem cell extracellular vesicle administration in patients with chronic kidney disease reported promising results; however, therapeutic application of extracellular vesicles is limited by a lack of scalable manufacturing protocols and clear criteria for standardization.
Collapse
|
11
|
Haniff HS, Liu X, Tong Y, Meyer SM, Knerr L, Lemurell M, Abegg D, Aikawa H, Adibekian A, Disney MD. A structure-specific small molecule inhibits a miRNA-200 family member precursor and reverses a type 2 diabetes phenotype. Cell Chem Biol 2022; 29:300-311.e10. [PMID: 34320373 PMCID: PMC8867599 DOI: 10.1016/j.chembiol.2021.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/07/2021] [Accepted: 07/02/2021] [Indexed: 11/03/2022]
Abstract
MicroRNA families are ubiquitous in the human transcriptome, yet targeting of individual members is challenging because of sequence homology. Many secondary structures of the precursors to these miRNAs (pri- and pre-miRNAs), however, are quite different. Here, we demonstrate both in vitro and in cellulis that design of structure-specific small molecules can inhibit a particular miRNA family member to modulate a disease pathway. The miR-200 family consists of five miRNAs, miR-200a, -200b, -200c, -141, and -429, and is associated with type 2 diabetes (T2D). We designed a small molecule that potently and selectively targets pre-miR-200c's structure and reverses a pro-apoptotic effect in a pancreatic β cell model. In contrast, an oligonucleotide targeting the RNA's sequence inhibited all family members. Global proteomics and RNA sequencing analyses further demonstrate selectivity for miR-200c. Collectively, these studies establish that miR-200c plays an important role in T2D, and small molecules targeting RNA structure can be an important complement to oligonucleotides.
Collapse
Affiliation(s)
- Hafeez S. Haniff
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA,These authors contributed equally
| | - Xiaohui Liu
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA,These authors contributed equally
| | - Yuquan Tong
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Samantha M. Meyer
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Laurent Knerr
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden, 1, Gothenburg, Mölndal 431 83, Sweden
| | - Malin Lemurell
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden, 1, Gothenburg, Mölndal 431 83, Sweden
| | - Daniel Abegg
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Haruo Aikawa
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Alexander Adibekian
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew D. Disney
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA,To whom correspondence is addressed;
| |
Collapse
|
12
|
Yates AG, Pink RC, Erdbrügger U, Siljander PR, Dellar ER, Pantazi P, Akbar N, Cooke WR, Vatish M, Dias‐Neto E, Anthony DC, Couch Y. In sickness and in health: The functional role of extracellular vesicles in physiology and pathology in vivo: Part I: Health and Normal Physiology: Part I: Health and Normal Physiology. J Extracell Vesicles 2022; 11:e12151. [PMID: 35041249 PMCID: PMC8765331 DOI: 10.1002/jev2.12151] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Previously thought to be nothing more than cellular debris, extracellular vesicles (EVs) are now known to mediate physiological and pathological functions throughout the body. We now understand more about their capacity to transfer nucleic acids and proteins between distant organs, the interaction of their surface proteins with target cells, and the role of vesicle-bound lipids in health and disease. To date, most observations have been made in reductionist cell culture systems, or as snapshots from patient cohorts. The heterogenous population of vesicles produced in vivo likely act in concert to mediate both beneficial and detrimental effects. EVs play crucial roles in both the pathogenesis of diseases, from cancer to neurodegenerative disease, as well as in the maintenance of system and organ homeostasis. This two-part review draws on the expertise of researchers working in the field of EV biology and aims to cover the functional role of EVs in physiology and pathology. Part I will outline the role of EVs in normal physiology.
Collapse
Affiliation(s)
- Abi G. Yates
- Department of PharmacologyUniversity of OxfordOxfordUK
- School of Biomedical SciencesFaculty of MedicineUniversity of QueenslandSt LuciaAustralia
| | - Ryan C. Pink
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityHeadington CampusOxfordUK
| | - Uta Erdbrügger
- Department of Medicine, Division of NephrologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Pia R‐M. Siljander
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Elizabeth R. Dellar
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityHeadington CampusOxfordUK
| | - Paschalia Pantazi
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityHeadington CampusOxfordUK
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - William R. Cooke
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordOxfordUK
| | - Manu Vatish
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordOxfordUK
| | - Emmanuel Dias‐Neto
- Laboratory of Medical Genomics. A.C. Camargo Cancer CentreSão PauloBrazil
- Laboratory of Neurosciences (LIM‐27) Institute of PsychiatrySão Paulo Medical SchoolSão PauloBrazil
| | | | - Yvonne Couch
- Acute Stroke Programme ‐ Radcliffe Department of MedicineUniversity of OxfordJohn Radcliffe Hospital, HeadingtonOxfordUK
| |
Collapse
|
13
|
Zia F, Irum I, Nawaz Qadri N, Nam Y, Khurshid K, Ali M, Ashraf I, Attique Khan M. A Multilevel Deep Feature Selection Framework for Diabetic Retinopathy Image Classification. COMPUTERS, MATERIALS & CONTINUA 2022; 70:2261-2276. [DOI: 10.32604/cmc.2022.017820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 08/25/2024]
|
14
|
Fluitt MB, Mohit N, Gambhir KK, Nunlee-Bland G. To the Future: The Role of Exosome-Derived microRNAs as Markers, Mediators, and Therapies for Endothelial Dysfunction in Type 2 Diabetes Mellitus. J Diabetes Res 2022; 2022:5126968. [PMID: 35237694 PMCID: PMC8885279 DOI: 10.1155/2022/5126968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/08/2022] [Indexed: 01/19/2023] Open
Abstract
The prevalence of diabetes mellitus (DM) is increasing at a staggering rate around the world. In the United States, more than 30.3 million Americans have DM. Type 2 diabetes mellitus (T2DM) accounts for 91.2% of diabetic cases and disproportionately affects African Americans and Hispanics. T2DM is a major risk factor for cardiovascular disease (CVD) and is the leading cause of morbidity and mortality among diabetic patients. While significant advances in T2DM treatment have been made, intensive glucose control has failed to reduce the development of macro and microvascular related deaths in this group. This highlights the need to further elucidate the underlying molecular mechanisms contributing to CVD in the setting of T2DM. Endothelial dysfunction (ED) plays an important role in the development of diabetes-induced vascular complications, including CVD and diabetic nephropathy (DN). Thus, the endothelium provides a lucrative means to investigate the molecular events involved in the development of vascular complications associated with T2DM. microRNAs (miRNA) participate in numerous cellular responses, including mediating messages in vascular homeostasis. Exosomes are small extracellular vesicles (40-160 nanometers) that are abundant in circulation and can deliver various molecules, including miRNAs, from donor to recipient cells to facilitate cell-to-cell communication. Endothelial cells are in constant contact with exosomes (and exosomal content) that can induce a functional response. This review discusses the modulatory role of exosomal miRNAs and proteins in diabetes-induced endothelial dysfunction, highlighting the significance of miRNAs as markers, mediators, and potential therapeutic interventions to ameliorate ED in this patient group.
Collapse
Affiliation(s)
- Maurice B. Fluitt
- Division of Endocrinology and Metabolism, Department of Medicine, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
| | - Neal Mohit
- Division of Endocrinology and Metabolism, Department of Medicine, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
- Department of Biology, Howard University, 415 College St. NW, Washington, DC 20059, USA
| | - Kanwal K. Gambhir
- Division of Endocrinology and Metabolism, Department of Medicine, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
| | - Gail Nunlee-Bland
- Division of Endocrinology and Metabolism, Department of Medicine, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
- Diabetes Treatment Center, Howard University Hospital, 2041 Georgia Ave, NW, Washington, DC 20060, USA
| |
Collapse
|
15
|
Williams S, Charest J, Pollak M, Subramanian BK. Bioengineering Strategies To Develop Podocyte Culture Systems. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:938-948. [PMID: 34541902 PMCID: PMC9419930 DOI: 10.1089/ten.teb.2021.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Unraveling the complex behavior of healthy and disease podocytes by analyzing the changes in their unique arrangement of foot processes, slit diaphragm and the 3D morphology is a long-standing goal in kidney-glomerular research. The complexities surrounding the podocytes' accessibility in animal models and growing evidence of differences between humans and animal systems have compelled researchers to look for alternate approaches to study podocyte behaviors. With the advent of bioengineered models, an increasingly powerful and diverse set of tools is available to develop novel podocyte culture systems. This review discusses the pertinence of various culture models of podocytes to study podocyte mechanisms in both normal physiology and disease conditions. While no one in vitro system comprehensively recapitulates podocytes' in vivo architecture, we emphasize how the existing systems can be exploited to answer targeted questions on podocyte structure and function. We highlight the distinct advantages and limitations of using these models to study podocyte behaviors and screen therapeutics. Finally, we discuss various considerations and potential engineering strategies for developing next-generation complex 3D culture models for studying podocyte behaviors in vitro.
Collapse
Affiliation(s)
- Sarah Williams
- Beth Israel Deaconess Medical Center, 1859, Boston, Massachusetts, United States;
| | - Joseph Charest
- Draper Laboratory, Biomedical Engineering, 555 Technology Square, Cambridge, Massachusetts, United States, 02139;
| | - Martin Pollak
- Beth Israel Deaconess Medical Center, 1859, Boston, Massachusetts, United States;
| | | |
Collapse
|
16
|
Vogt S, Bobbili MR, Stadlmayr G, Stadlbauer K, Kjems J, Rüker F, Grillari J, Wozniak‐Knopp G. An engineered CD81-based combinatorial library for selecting recombinant binders to cell surface proteins: Laminin binding CD81 enhances cellular uptake of extracellular vesicles. J Extracell Vesicles 2021; 10:e12139. [PMID: 34514736 PMCID: PMC8435527 DOI: 10.1002/jev2.12139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022] Open
Abstract
The research of extracellular vesicles (EVs) has boomed in the last decade, with the promise of them functioning as target-directed drug delivery vehicles, able to modulate proliferation, migration, differentiation, and other properties of the recipient cell that are vital for health of the host organism. To enhance the ability of their targeted delivery, we employed an intrinsically overrepresented protein, CD81, to serve for recognition of the desired target antigen. Yeast libraries displaying mutant variants of the large extracellular loop of CD81 have been selected for binders to human placental laminin as an example target. Their specific interaction with laminin was confirmed in a mammalian display system. Derived sequences were reformatted to full-length CD81 and expressed in EVs produced by HeLa cells. These EVs were examined for the presence of the recombinant protein and were shown to exhibit an enhanced uptake into laminin-secreting mammalian cell lines. For the best candidate, the specificity of antigen interaction was demonstrated with a competition experiment. To our knowledge, this is the first example of harnessing an EV membrane protein as mediator of de novo target antigen recognition via in vitro molecular evolution, opening horizons to a broad range of applications in various therapeutic settings.
Collapse
Affiliation(s)
- Stefan Vogt
- acib GmbH (Austrian Centre of Industrial Biotechnology)GrazAustria
- Department of BiotechnologyInstitute of Molecular BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Madhusudhan Reddy Bobbili
- Department of BiotechnologyInstitute of Molecular BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research CenterViennaAustria
| | - Gerhard Stadlmayr
- Department of BiotechnologyChristian Doppler Laboratory for Innovative ImmunotherapeuticsUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Katharina Stadlbauer
- Department of BiotechnologyChristian Doppler Laboratory for Innovative ImmunotherapeuticsUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Jørgen Kjems
- Department of Molecular Biology and GeneticsCentre for Cellular Signal Patterns (CellPat)Interdisciplinary Nanoscience Centre (iNANO)Aarhus UniversityAarhus CDenmark
| | - Florian Rüker
- Department of BiotechnologyInstitute of Molecular BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Johannes Grillari
- Department of BiotechnologyInstitute of Molecular BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research CenterViennaAustria
| | - Gordana Wozniak‐Knopp
- Department of BiotechnologyInstitute of Molecular BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Department of BiotechnologyChristian Doppler Laboratory for Innovative ImmunotherapeuticsUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| |
Collapse
|
17
|
Bellucci L, Montini G, Collino F, Bussolati B. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Pass through the Filtration Barrier and Protect Podocytes in a 3D Glomerular Model under Continuous Perfusion. Tissue Eng Regen Med 2021; 18:549-560. [PMID: 34313970 PMCID: PMC8325748 DOI: 10.1007/s13770-021-00374-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Dynamic cultures, characterized by continuous fluid reperfusion, elicit physiological responses from cultured cells. Mesenchymal stem cell-derived EVs (MSC-EVs) has been proposed as a novel approach in treating several renal diseases, including acute glomerular damage, by using traditional two-dimensional cell cultures and in vivo models. We here aimed to use a fluidic three-dimensional (3D) glomerular model to study the EV dynamics within the glomerular structure under perfusion. METHODS To this end, we set up a 3D glomerular model culturing human glomerular endothelial cells and podocytes inside a bioreactor on the opposite sides of a porous membrane coated with type IV collagen. The bioreactor was connected to a circuit that allowed fluid passage at the rate of 80 µl/min. To mimic glomerular damage, the system was subjected to doxorubicin administration in the presence of therapeutic MSC-EVs. RESULTS The integrity of the glomerular basal membrane in the 3D glomerulus was assessed by a permeability assay, demonstrating that the co-culture could limit the passage of albumin through the filtration barrier. In dynamic conditions, serum EVs engineered with cel-miR-39 passed through the glomerular barrier and transferred the exogenous microRNA to podocyte cell lines. Doxorubicin treatment increased podocyte apoptosis, whereas MSC-EV within the endothelial circuit protected podocytes from damage, decreasing cell death and albumin permeability. CONCLUSION Using an innovative millifluidic model, able to mimic the human glomerular barrier, we were able to trace the EV passage and therapeutic effect in dynamic conditions.
Collapse
Affiliation(s)
- Linda Bellucci
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126, Turin, Italy
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Montini
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione Ca' Granda IRCCS, Policlinico Di Milano, Milan, Italy
| | - Federica Collino
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126, Turin, Italy.
| |
Collapse
|
18
|
Urinary Extracellular Vesicles: Uncovering the Basis of the Pathological Processes in Kidney-Related Diseases. Int J Mol Sci 2021; 22:ijms22126507. [PMID: 34204452 PMCID: PMC8234687 DOI: 10.3390/ijms22126507] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
Intercellular communication governs multicellular interactions in complex organisms. A variety of mechanisms exist through which cells can communicate, e.g., cell-cell contact, the release of paracrine/autocrine soluble molecules, or the transfer of extracellular vesicles (EVs). EVs are membrane-surrounded structures released by almost all cell types, acting both nearby and distant from their tissue/organ of origin. In the kidney, EVs are potent intercellular messengers released by all urinary system cells and are involved in cell crosstalk, contributing to physiology and pathogenesis. Moreover, urine is a reservoir of EVs coming from the circulation after crossing the glomerular filtration barrier—or originating in the kidney. Thus, urine represents an alternative source for biomarkers in kidney-related diseases, potentially replacing standard diagnostic techniques, including kidney biopsy. This review will present an overview of EV biogenesis and classification and the leading procedures for isolating EVs from body fluids. Furthermore, their role in intra-nephron communication and their use as a diagnostic tool for precision medicine in kidney-related disorders will be discussed.
Collapse
|
19
|
Martinez-Arroyo O, Ortega A, Redon J, Cortes R. Therapeutic Potential of Extracellular Vesicles in Hypertension-Associated Kidney Disease. Hypertension 2020; 77:28-38. [PMID: 33222549 DOI: 10.1161/hypertensionaha.120.16064] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypertension-mediated organ damage frequently includes renal function decline in which several mechanisms are involved. The present review outlines the state of the art on extracellular vesicles in hypertension and hypertension-related renal damage. Emerging evidence indicates that extracellular vesicles, small vesicles secreted by most cell types and body fluids, are involved in cell-to-cell communication and are key players mediating biological processes such as inflammation, endothelial dysfunction or fibrosis, mechanisms present the onset and progression of hypertension-associated kidney disease. We address the potential use of extracellular vesicles as markers of hypertension-mediated kidney damage severity and their application as therapeutic agents in hypertension-associated renal damage. The capacity of exosomes to deliver a wide variety of cargos to the target cell efficiently makes them a potential drug delivery system for treatment of renal diseases.
Collapse
Affiliation(s)
- Olga Martinez-Arroyo
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (O.M.-A., A.O., J.R., R.C.)
| | - Ana Ortega
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (O.M.-A., A.O., J.R., R.C.)
| | - Josep Redon
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (O.M.-A., A.O., J.R., R.C.).,Internal Medicine, Clinic Universitary Hospital, Valencia, Spain (J.R.).,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Minister of Health, Madrid, Spain (J.R.)
| | - Raquel Cortes
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (O.M.-A., A.O., J.R., R.C.)
| |
Collapse
|