1
|
Rodwell EV, Chan YW, Sawyer C, Carroll A, McNamara E, Allison L, Browning L, Holmes A, Godbole G, McCarthy N, Jenkins C. Shiga toxin-producing Escherichia coli clonal complex 32, including serotype O145:H28, in the UK and Ireland. J Med Microbiol 2022; 71. [PMID: 35984744 DOI: 10.1099/jmm.0.001579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction. Shiga toxin-producing Escherichia coli (STEC) O157:H7 has been the most clinically significant STEC serotype in the UK for over four decades. Over the last 10 years we have observed a decrease in STEC O157:H7 and an increase in non-O157 STEC serotypes, such as O145:H28.Gap Statement. Little is known about the microbiology and epidemiology of STEC belonging to CC32 (including O145:H28) in the UK. The aim of this study was to integrate genomic data with patient information to gain a better understanding of the virulence, disease severity, epidemic risk assessment and population structure of this clinically significant clonal complex.Methodology. Isolates of E. coli belonging to CC32 (n=309) in the archives of public health agencies in the UK and Ireland were whole-genome-sequenced, virulence-profiled and integrated with enhanced surveillance questionnaire (ESQ) data, including exposures and disease severity.Results. Overall, diagnoses of STEC belonging to CC32 (290/309, 94 %) in the UK have increased every year since 2014. Most cases were female (61 %), and the highest proportion of cases belonged to the 0-4 age group (53/211,25 %). The frequency of symptoms of diarrhoea (92 %), abdominal pain (84 %), blood in stool (71 %) and nausea (51 %) was similar to that reported in cases of STEC O157:H7, although cases of STEC CC32 were more frequently admitted to hospital (STEC CC32 48 % vs O157:H7 34 %) and/or developed haemolytic uraemic syndrome (HUS) (STEC CC32 9 % vs O157:H7 4 %).The majority of STEC isolates (268/290, 92 %) had the stx2a/eae virulence gene combination, most commonly associated with progression to STEC HUS. There was evidence of person-to-person transmission and small, temporally related, geographically dispersed outbreaks, characteristic of foodborne outbreaks linked to nationally distributed products.Conclusion. We recommend more widespread use of polymerase chain reaction (PCR) for the detection of all STEC serogroups, the development of consistent strategies for the follow-up testing of PCR-positive faecal specimens, the implementation of more comprehensive and standardized collection of epidemiological data, and routine sharing of sequencing data between public health agencies worldwide.
Collapse
Affiliation(s)
- Ella V Rodwell
- National Infection Service, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5AT, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- NIHR HPRU in Gastrointestinal Infections at University of Liverpool, Liverpool L69 3BX, UK
| | - Yung-Wai Chan
- National Infection Service, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5AT, UK
| | - Clare Sawyer
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Anne Carroll
- Public Health Laboratory, Health Service Executive, Cherry Orchard Hospital, Ballyfermot, Dublin, Ireland
| | - Eleanor McNamara
- Public Health Laboratory, Health Service Executive, Cherry Orchard Hospital, Ballyfermot, Dublin, Ireland
| | - Lesley Allison
- Scottish E. coli O157/STEC Reference Laboratory, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SA, UK
| | | | - Anne Holmes
- Scottish E. coli O157/STEC Reference Laboratory, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SA, UK
| | - Gauri Godbole
- National Infection Service, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5AT, UK
| | - Noel McCarthy
- NIHR HPRU in Gastrointestinal Infections at University of Liverpool, Liverpool L69 3BX, UK
- Public Health and Primary Care, Trinity College Dublin, Dublin, Ireland
| | - Claire Jenkins
- National Infection Service, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5AT, UK
- NIHR HPRU in Gastrointestinal Infections at University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
2
|
Zhang S, Sun H, Lao G, Zhou Z, Liu Z, Cai J, Sun Q. Identification of Mobile Colistin Resistance Gene mcr-10 in Disinfectant and Antibiotic Resistant Escherichia coli from Disinfected Tableware. Antibiotics (Basel) 2022; 11:883. [PMID: 35884137 PMCID: PMC9311939 DOI: 10.3390/antibiotics11070883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
The widespread escalation of bacterial resistance threatens the safety of the food chain. To investigate the resistance characteristics of E. coli strains isolated from disinfected tableware against both disinfectants and antibiotics, 311 disinfected tableware samples, including 54 chopsticks, 32 dinner plates, 61 bowls, 11 cups, and three spoons were collected in Chengdu, Sichuan Province, China to screen for disinfectant- (benzalkonium chloride and cetylpyridinium chloride) and tigecycline-resistant isolates, which were then subjected to antimicrobial susceptibility testing and whole genome sequencing (WGS). The coliform-positive detection rate was 51.8% (161/311) and among 161 coliform-positive samples, eight E. coli strains were multidrug-resistant to benzalkonium chloride, cetylpyridinium chloride, ampicillin, and tigecycline. Notably, a recently described mobile colistin resistance gene mcr-10 present on the novel IncFIB-type plasmid of E. coli EC2641 screened was able to successfully transform the resistance. Global phylogenetic analysis revealed E. coli EC2641 clustered together with two clinically disinfectant- and colistin-multidrug-resistant E. coli strains from the US. This is the first report of mcr-10-bearing E. coli detected in disinfected tableware, suggesting that continuous monitoring of resistance genes in the catering industry is essential to understand and respond to the transmission of antibiotic resistance genes from the environment and food to humans and clinics.
Collapse
Affiliation(s)
- Senlin Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610064, China;
| | - Honghu Sun
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu Institute of Food Inspection, Chengdu 611135, China; (H.S.); (J.C.)
| | - Guangjie Lao
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (G.L.); (Z.Z.); (Z.L.)
| | - Zhiwei Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (G.L.); (Z.Z.); (Z.L.)
| | - Zhuochong Liu
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (G.L.); (Z.Z.); (Z.L.)
| | - Jiong Cai
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu Institute of Food Inspection, Chengdu 611135, China; (H.S.); (J.C.)
| | - Qun Sun
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610064, China;
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (G.L.); (Z.Z.); (Z.L.)
| |
Collapse
|
3
|
Carbonari CC, Miliwebsky ES, Zolezzi G, Deza NL, Fittipaldi N, Manfredi E, Baschkier A, D’Astek BA, Melano RG, Schesi C, Rivas M, Chinen I. The Importance of Shiga Toxin-Producing Escherichia coli O145:NM[H28]/H28 Infections in Argentina, 1998–2020. Microorganisms 2022; 10:microorganisms10030582. [PMID: 35336157 PMCID: PMC8950694 DOI: 10.3390/microorganisms10030582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 02/01/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is known as a pathogen associated with food-borne diseases. The STEC O145 serogroup has been related with acute watery diarrhea, bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Argentina has the highest rate of HUS worldwide with 70% of the cases associated with STEC infections. We aimed to describe the epidemiology and genetic diversity of STEC O145 strains isolated across Argentina between 1998–2020. The strains isolated from 543 cases of human disease and four cattle, were pheno-genotipically characterized. Sequencing of five strains was performed. The strains were serotyped as O145:NM[H28]/H28, O145:H25, and O145:HNT, and mainly characterized as O145:NM[H28]/stx2a/eae/ehxA (98.1%). The results obtained by sequencing were consistent with those obtained by traditional methods and additional genes involved in different mechanisms of the pathogen were observed. In this study, we confirmed that STEC O145 strains are the second serogroup after O157 and represent 20.3% of HUS cases in Argentina. The frequency of STEC O145 and other significant serogroups is of utmost importance for public health in the country. This study encourages the improvement of the surveillance system to prevent severe cases of human disease.
Collapse
Affiliation(s)
- Claudia Carolina Carbonari
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (E.S.M.); (G.Z.); (N.L.D.); (E.M.); (A.B.); (B.A.D.); (C.S.); (M.R.); (I.C.)
- Correspondence:
| | - Elizabeth Sandra Miliwebsky
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (E.S.M.); (G.Z.); (N.L.D.); (E.M.); (A.B.); (B.A.D.); (C.S.); (M.R.); (I.C.)
| | - Gisela Zolezzi
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (E.S.M.); (G.Z.); (N.L.D.); (E.M.); (A.B.); (B.A.D.); (C.S.); (M.R.); (I.C.)
| | - Natalia Lorena Deza
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (E.S.M.); (G.Z.); (N.L.D.); (E.M.); (A.B.); (B.A.D.); (C.S.); (M.R.); (I.C.)
| | - Nahuel Fittipaldi
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Eduardo Manfredi
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (E.S.M.); (G.Z.); (N.L.D.); (E.M.); (A.B.); (B.A.D.); (C.S.); (M.R.); (I.C.)
| | - Ariela Baschkier
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (E.S.M.); (G.Z.); (N.L.D.); (E.M.); (A.B.); (B.A.D.); (C.S.); (M.R.); (I.C.)
| | - Beatriz Alejandra D’Astek
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (E.S.M.); (G.Z.); (N.L.D.); (E.M.); (A.B.); (B.A.D.); (C.S.); (M.R.); (I.C.)
| | - Roberto Gustavo Melano
- Public Health Ontario, Toronto Laboratories, Toronto, ON M5G 1M1, Canada;
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Carla Schesi
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (E.S.M.); (G.Z.); (N.L.D.); (E.M.); (A.B.); (B.A.D.); (C.S.); (M.R.); (I.C.)
| | - Marta Rivas
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (E.S.M.); (G.Z.); (N.L.D.); (E.M.); (A.B.); (B.A.D.); (C.S.); (M.R.); (I.C.)
| | - Isabel Chinen
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (E.S.M.); (G.Z.); (N.L.D.); (E.M.); (A.B.); (B.A.D.); (C.S.); (M.R.); (I.C.)
| |
Collapse
|
4
|
Wang Z, Zheng X, Guo G, Hu Z, Miao J, Dong Y, Xu Z, Zhou Q, Wei X, Han X, Liu Y, Zhang W. O145 may be emerging as a predominant serogroup of Avian pathogenic Escherichia coli (APEC) in China. Vet Microbiol 2022; 266:109358. [DOI: 10.1016/j.vetmic.2022.109358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022]
|
5
|
Castro VS, Ortega Polo R, Figueiredo EEDS, Bumunange EW, McAllister T, King R, Conte-Junior CA, Stanford K. Inconsistent PCR detection of Shiga toxin-producing Escherichia coli: Insights from whole genome sequence analyses. PLoS One 2021; 16:e0257168. [PMID: 34478476 PMCID: PMC8415614 DOI: 10.1371/journal.pone.0257168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/25/2021] [Indexed: 01/10/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) have been linked to food-borne disease outbreaks. As PCR is routinely used to screen foods for STEC, it is important that factors leading to inconsistent detection of STEC by PCR are understood. This study used whole genome sequencing (WGS) to investigate causes of inconsistent PCR detection of stx1, stx2, and serogroup-specific genes. Fifty strains isolated from Alberta feedlot cattle from three different studies were selected with inconsistent or consistent detection of stx and serogroup by PCR. All isolates were initially classified as STEC by PCR. Sequencing was performed using Illumina MiSeq® with sample library by Nextera XT. Virtual PCRs were performed using Geneious and bacteriophage content was determined using PHASTER. Sequencing coverage ranged from 47 to 102x, averaging 74x, with sequences deposited in the NCBI database. Eleven strains were confirmed by WGS as STEC having complete stxA and stxB subunits. However, truncated stx fragments occurred in twenty-two other isolates, some having multiple stx fragments in the genome. Isolates with complete stx by WGS had consistent stx1 and stx2 detection by PCR, although one also having a stx2 fragment had inconsistent stx2 PCR. For all STEC and 18/39 non-STEC, serogroups determined by PCR agreed with those determined by WGS. An additional three WGS serotypes were inconclusive and two isolates were Citrobacter spp. Results demonstrate that stx fragments associated with stx-carrying bacteriophages in the E. coli genome may contribute to inconsistent detection of stx1 and stx2 by PCR. Fourteen isolates had integrated stx bacteriophage but lacked complete or fragmentary stx possibly due to partial bacteriophage excision after sub-cultivation or other unclear mechanisms. The majority of STEC isolates (7/11) did not have identifiable bacteriophage DNA in the contig(s) where stx was located, likely increasing the stability of stx in the bacterial genome and its detection by PCR.
Collapse
Affiliation(s)
- Vinicius Silva Castro
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Food and Nutrition, Federal University of Mato Grosso, Cuiaba, Brazil
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Rodrigo Ortega Polo
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | | | | | - Tim McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | - Robin King
- Alberta Agriculture and Forestry, Edmonton, Canada
| | | | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|