1
|
Yang S, Usami N, Lu SL, Oda W, Maegawa H, Niwa H, Kudo C. Hormonal mechanisms in the paraventricular nuclei associated with hyperalgesia in Parkinson's disease model rats. Biochem Biophys Res Commun 2025; 744:151178. [PMID: 39706053 DOI: 10.1016/j.bbrc.2024.151178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Pain is a major non-motor symptom of Parkinson's disease (PD). The relationship between hyperalgesia and neuropeptides originating from paraventricular nucleus (PVN) in 6-hydroxydopamine (6-OHDA) rats has already been investigated for oxytocin (OXT), but not yet for arginine vasopressin (AVP) and corticotropin-releasing hormone (CRH). The present study aimed to investigate the alterations in these neuropeptides following nociceptive stimulation in PD model rats and to examine the mechanisms of hyperalgesia. Dopaminergic nigrostriatal lesions were induced by injecting 6-OHDA into the medial forebrain bundle. Subcutaneous formalin injection into the vibrissa pad was performed in rats as a nociceptive stimulus in the orofacial region. Dopamine depletion's effect on nociception was assessed by counting the p-ERK-immunoreactive (-IR) cells in the trigeminal spinal subnucleus caudalis (Vc). The PD model rats induced by 6-OHDA injection (6-OHDA rats) showed a significantly higher number of p-ERK-IR cells in the Vc than the sham rats, confirming hyperalgesia in 6-OHDA rats. Then, we investigated the immunohistochemical responses to OXT, AVP, and CRH cells in the PVN and examined the changes in blood levels of these neuropeptides. As a result, formalin injection increased neuronal activity and blood levels of OXT and CRH in sham rats, but these were suppressed in the 6-OHDA rats. Contrarily, neuronal activity and blood level of AVP were unaffected by nociceptive stimuli and were significantly lower in 6-OHDA rats than in sham rats. Our findings suggest that OXT and CRH suppression is linked to hyperalgesia in PD, whereas AVP does not directly influence the observed hyperalgesia.
Collapse
Affiliation(s)
- Shengsen Yang
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Nayuka Usami
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Shiou Ling Lu
- Department of Oral Cellular Biology, Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Wakana Oda
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hiroharu Maegawa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Chiho Kudo
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Usami N, Maegawa H, Hayashi M, Kudo C, Niwa H. Changes in the analgesic mechanism of oxytocin can contribute to hyperalgesia in Parkinson's disease model rats. PLoS One 2024; 19:e0300081. [PMID: 39163355 PMCID: PMC11335116 DOI: 10.1371/journal.pone.0300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/19/2024] [Indexed: 08/22/2024] Open
Abstract
Pain is a major non-motor symptom of Parkinson's disease (PD). Alterations in the descending pain inhibitory system (DPIS) have been reported to trigger hyperalgesia in PD patients. However, the underlying mechanisms remain unclear. In the current study, dopaminergic nigrostriatal lesions were induced in rats by injecting 6-hydroxydopamine (6-OHDA) into their medial forebrain bundle. The neural mechanisms underlying changes in nociception in the orofacial region of 6-OHDA-lesioned rats was examined by injecting formalin into the vibrissa pad. The 6-OHDA-lesioned rats were seen to exhibit increased frequency of face-rubbing and more c-Fos immunoreactive (c-Fos-IR) cells in the trigeminal spinal subnucleus caudalis (Vc), confirming hyperalgesia. Examination of the number of c-Fos-IR cells in the DPIS nuclei [including the midbrain ventrolateral periaqueductal gray, the locus coeruleus, the nucleus raphe magnus, and paraventricular nucleus (PVN)] showed that 6-OHDA-lesioned rats exhibited a significantly lower number of c-Fos-IR cells in the magnocellular division of the PVN (mPVN) after formalin injection compared to sham-operated rats. Moreover, the 6-OHDA-lesioned rats also exhibited significantly lower plasma oxytocin (OT) concentration and percentage of oxytocin-immunoreactive (OT-IR) neurons expressing c-Fos protein in the mPVN and dorsal parvocellular division of the PVN (dpPVN), which secrete the analgesic hormone OT upon activation by nociceptive stimuli, when compared to the sham-operated rats. The effect of OT on hyperalgesia in 6-OHDA-lesioned rats was examined by injecting formalin into the vibrissa pad after intracisternal administration of OT, and the findings showed a decrease in the frequency of face rubbing and the number of c-Fos-IR cells in the Vc. In conclusion, these findings confirm presence of hyperalgesia in PD rats, potentially due to suppression of the analgesic effects of OT originating from the PVN.
Collapse
Affiliation(s)
- Nayuka Usami
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Hiroharu Maegawa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masayoshi Hayashi
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Chiho Kudo
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
3
|
Buhidma Y, Lama J, Duty S. Insight gained from using animal models to study pain in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 174:99-118. [PMID: 38341233 DOI: 10.1016/bs.irn.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Pain is one of the key non-motor symptoms experienced by a large proportion of people living with Parkinson's disease (PD), yet the mechanisms behind this pain remain elusive and as such its treatment remains suboptimal. It is hoped that through the study of animal models of PD, we can start to unravel some of the contributory mechanisms, and perhaps identify models that prove useful as test beds for assessing the efficacy of potential new analgesics. However, just how far along this journey are we right now? Is it even possible to model pain in PD in animal models of the disease? And have we gathered any insight into pain mechanisms from the use of animal models of PD so far? In this chapter we intend to address these questions and in particular highlight the findings generated by others, and our own group, following studies in a range of rodent models of PD.
Collapse
Affiliation(s)
- Yazead Buhidma
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Sensory, Pain and Regeneration Centre, Guy's Campus, London, United Kingdom
| | - Joana Lama
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Sensory, Pain and Regeneration Centre, Guy's Campus, London, United Kingdom
| | - Susan Duty
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Sensory, Pain and Regeneration Centre, Guy's Campus, London, United Kingdom.
| |
Collapse
|
4
|
Cannabidiol has therapeutic potential for myofascial pain in female and male parkinsonian rats. Neuropharmacology 2021; 196:108700. [PMID: 34246682 DOI: 10.1016/j.neuropharm.2021.108700] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022]
Abstract
The musculoskeletal orofacial pain is a complex symptom of Parkinson's disease (PD) resulting in stomatognathic system dysfunctions aggravated by the disease rigidity and postural instability. We tested the effect of cannabidiol (CBD), a non-psychotomimetic constituent of Cannabis sativa, in PD-related myofascial pain. Wistar adult female and male rats orofacial allodynic and hyperalgesic responses were tested by Von Frey and formalin tests, before and 21 days past 6-OHDA lesion. Algesic response was tested after masseter muscle injection of CBD (10, 50, 100 μg in 10 μL) or vehicle. Males compared to females in all estrous cycles' phases presented reduced orofacial allodynia and hyperalgesia. According to the estrous cycle's phases, females presented distinct orofacial nociceptive responses, being the estrus phase well-chosen for nociceptive analysis after 6-OHDA lesion (phase with fewer hormone alterations and adequate length). Dopaminergic neuron lesion decreased mechanical and inflammatory nociceptive thresholds in females and males in a higher proportion in females. CBD local treatment reduced the increased orofacial allodynia and hyperalgesia, in males and females. The female rats were more sensitive to CBD effect considering allodynia, responding to the lowest dose. Although females and males respond to the effect of three doses of CBD in the formalin test, males showed a superior reduction in the hyperalgesic response. These results indicate that hemiparkinsonian female in the estrus phase and male answer differently to the different doses of CBD therapy and nociceptive tests. CBD therapy is effective for parkinsonism-induced orofacial nociception.
Collapse
|
5
|
Maegawa H, Niwa H. Generation of Mitochondrial Toxin Rodent Models of Parkinson's Disease Using 6-OHDA , MPTP , and Rotenone. Methods Mol Biol 2021; 2322:95-110. [PMID: 34043196 DOI: 10.1007/978-1-0716-1495-2_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Several animal models are employed to discover novel treatments for the symptoms of Parkinson's disease (PD). PD models can be divided into two models: neurotoxin models and genetic models. Among neurotoxins to produce PD models, 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and rotenone, which inhibit the mitochondrial complex I, are widely used. Animal models of PD using these neurotoxins are also known as mitochondrial toxin models. Here this chapter describes the preparation of these mitochondrial toxin models.
Collapse
Affiliation(s)
- Hiroharu Maegawa
- Department of Dental Anesthesia, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Hitoshi Niwa
- Department of Dental Anesthesia, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
6
|
Dopaminergic Modulation of Orofacial Mechanical Hypersensitivity Induced by Infraorbital Nerve Injury. Int J Mol Sci 2020; 21:ijms21061945. [PMID: 32178439 PMCID: PMC7139594 DOI: 10.3390/ijms21061945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 01/13/2023] Open
Abstract
While the descending dopaminergic control system is not fully understood, it is reported that the hypothalamic A11 nucleus is its principle source. To better understand the impact of this system, particularly the A11 nucleus, on neuropathic pain, we created a chronic constriction injury model of the infraorbital nerve (ION-CCI) in rats. ION-CCI rats received intraperitoneal administrations of quinpirole (a dopamine D2 receptor agonist). ION-CCI rats received microinjections of quinpirole, muscimol [a gamma-aminobutyric acid type A (GABAA) receptor agonist], or neurotoxin 6-hydroxydopamine (6-OHDA) into the A11 nucleus. A von Frey filament was used as a mechanical stimulus on the maxillary whisker pad skin; behavioral and immunohistochemical responses to the stimulation were assessed. After intraperitoneal administration of quinpirole and microinjection of quinpirole or muscimol, ION-CCI rats showed an increase in head-withdrawal thresholds and a decrease in the number of phosphorylated extracellular signal-regulated kinase (pERK) immunoreactive (pERK-IR) cells in the superficial layers of the trigeminal spinal subnucleus caudalis (Vc). Following 6-OHDA microinjection, ION-CCI rats showed a decrease in head-withdrawal thresholds and an increase in the number of pERK-IR cells in the Vc. Our findings suggest the descending dopaminergic control system is involved in the modulation of trigeminal neuropathic pain.
Collapse
|