1
|
Tamir SO, Bialasiewicz S, Brennan-Jones CG, Der C, Kariv L, Macharia I, Marsh RL, Seguya A, Thornton R. ISOM 2023 research Panel 4 - Diagnostics and microbiology of otitis media. Int J Pediatr Otorhinolaryngol 2023; 174:111741. [PMID: 37788516 DOI: 10.1016/j.ijporl.2023.111741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVES To identify and review key research advances from the literature published between 2019 and 2023 on the diagnosis and microbiology of otitis media (OM) including acute otitis media (AOM), recurrent AOM (rAOM), otitis media with effusion (OME), chronic suppurative otitis media (CSOM) and AOM complications (mastoiditis). DATA SOURCES PubMed database of the National Library of Medicine. REVIEW METHODS All relevant original articles published in Medline in English between July 2019 and February 2023 were identified. Studies that were reviews, case studies, relating to OM complications (other than mastoiditis), and studies focusing on guideline adherence, and consensus statements were excluded. Members of the panel drafted the report based on these search results. MAIN FINDINGS For the diagnosis section, 2294 unique records screened, 55 were eligible for inclusion. For the microbiology section 705 unique records were screened and 137 articles were eligible for inclusion. The main themes that arose in OM diagnosis were the need to incorporate multiple modalities including video-otoscopy, tympanometry, telemedicine and artificial intelligence for accurate diagnoses in all diagnostic settings. Further to this, was the use of new, cheap, readily available tools which may improve access in rural and lowmiddle income (LMIC) settings. For OM aetiology, PCR remains the most sensitive method for detecting middle ear pathogens with microbiome analysis still largely restricted to research use. The global pandemic response reduced rates of OM in children, but post-pandemic shifts should be monitored. IMPLICATION FOR PRACTICE AND FUTURE RESEARCH Cheap, easy to use multi-technique assessments combined with artificial intelligence and/or telemedicine should be integrated into future practice to improve diagnosis and treatment pathways in OM diagnosis. Longitudinal studies investigating the in-vivo process of OM development, timings and in-depth interactions between the triad of bacteria, viruses and the host immune response are still required. Standardized methods of collection and analysis for microbiome studies to enable inter-study comparisons are required. There is a need to target underlying biofilms if going to effectively prevent rAOM and OME and possibly enhance ventilation tube retention.
Collapse
Affiliation(s)
- Sharon Ovnat Tamir
- Department of Otolaryngology-Head and Neck Surgery, Sasmon Assuta Ashdod University Hospital, Faculty of Health Sciences, Ben Gurion University of the Negev, Israel.
| | - Seweryn Bialasiewicz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christopher G Brennan-Jones
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia; Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Carolina Der
- Facultad de Medicina, Universidad Del Desarrollo, Dr Luis Calvo Mackenna Hospital, Santiago, Chile
| | - Liron Kariv
- Hearing, Speech and Language Institute, Sasmon Assuta Ashdod University Hospital, Israel
| | - Ian Macharia
- Kenyatta University Teaching, Referral & Research Hospital, Kenya
| | - Robyn L Marsh
- Menzies School of Health Research, Darwin, Australia; School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Amina Seguya
- Department of Otolaryngology - Head and Neck Surgery, Mulago National Referral Hospital, Kampala, Uganda
| | - Ruth Thornton
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia; Centre for Child Health Research, University of Western Australia, Perth, Australia
| |
Collapse
|
2
|
Massa HM, Spann KM, Cripps AW. Innate Immunity in the Middle Ear Mucosa. Front Cell Infect Microbiol 2021; 11:764772. [PMID: 34778109 PMCID: PMC8586084 DOI: 10.3389/fcimb.2021.764772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023] Open
Abstract
Otitis media (OM) encompasses a spectrum of clinical presentations ranging from the readily identifiable Acute OM (AOM), which is characterised by otalgia and fever, to chronic otitis media with effusion (COME) where impaired hearing due to middle ear effusion may be the only clinical symptom. Chronic suppurative OM (CSOM) presents as a more severe form of OM, involving perforation of the tympanic membrane. The pathogenesis of OM in these varied clinical presentations is unclear but activation of the innate inflammatory responses to viral and/or bacterial infection of the upper respiratory tract performs an integral role. This localised inflammatory response can persist even after pathogens are cleared from the middle ear, eustachian tubes and, in the case of respiratory viruses, even the nasal compartment. Children prone to OM may experience an over exuberant inflammatory response that underlies the development of chronic forms of OM and their sequelae, including hearing impairment. Treatments for chronic effusive forms of OM are limited, with current therapeutic guidelines recommending a "watch and wait" strategy rather than active treatment with antibiotics, corticosteroids or other anti-inflammatory drugs. Overall, there is a clear need for more targeted and effective treatments that either prevent or reduce the hyper-inflammatory response associated with chronic forms of OM. Improved treatment options rely upon an in-depth understanding of OM pathogenesis, particularly the role of the host innate immune response during acute OM. In this paper, we review the current literature regarding the innate immune response within the middle ear to bacterial and viral otopathogens alone, and as co-infections. This is an important consideration, as the role of respiratory viruses as primary pathogens in OM is not yet fully understood. Furthermore, increased reporting from PCR-based diagnostics, indicates that viral/bacterial co-infections in the middle ear are more common than bacterial infections alone. Increasingly, the mechanisms by which viral/bacterial co-infections may drive or maintain complex innate immune responses and inflammation during OM as a chronic response require investigation. Improved understanding of the pathogenesis of chronic OM, including host innate immune response within the middle ear is vital for development of improved diagnostic and treatment options for our children.
Collapse
Affiliation(s)
- Helen M Massa
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Kirsten M Spann
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Allan W Cripps
- Menzies Health Institute Queensland, School of Medicine, Griffith University, Gold Coast, QLD, Australia.,School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
3
|
Kono M, Umar NK, Takeda S, Ohtani M, Murakami D, Sakatani H, Kaneko F, Nanushaj D, Hotomi M. Novel Antimicrobial Treatment Strategy Based on Drug Delivery Systems for Acute Otitis Media. Front Pharmacol 2021; 12:640514. [PMID: 34421583 PMCID: PMC8371970 DOI: 10.3389/fphar.2021.640514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Despite tremendous success of pneumococcal conjugated vaccine and antimicrobial treatment by amoxicillin, acute otitis media (AOM) still remains as a great medical concern. Failure of antimicrobial treatment includes several factors. The middle ear cavity is surrounded by bone tissue, which makes it difficult to maintain sufficient concentration of antibiotics. Tympanic membrane of AOM patients thickens and actually becomes a barrier for topical therapy. This review discusses novel antimicrobial treatment strategies based on drug delivery systems (DDS) for AOM. To deliver drugs enough to kill the pathogenic bacteria without systemic side effects, the development of new antimicrobial treatment strategy applying innovative drug DDS has been expected. The sustained-release DDS can achieve sufficient time for antimicrobial concentrations to exceed minimum inhibitory concentration (MIC) for time-dependent antibiotics as well as enough maximum concentration for dose-dependent antibiotics to eradicate causative pathogens in the middle ear. The development of trans-tympanic membranes of DDS, such as hydrogels with chemical permeation enhancers (CPEs), is another attractive strategy. Phage is a promising strategy for developing DDS-based therapies. The DDS formulations enable antimicrobial treatment of AOM by a single dose and thus, an attractive future antimicrobial treatment for AOM.
Collapse
Affiliation(s)
- Masamitsu Kono
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Nafisa K Umar
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Saori Takeda
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Makiko Ohtani
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Daichi Murakami
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Hideki Sakatani
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Fumie Kaneko
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan.,Department of Otorhinolaryngology, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Denisa Nanushaj
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Muneki Hotomi
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
4
|
Frazier KM, Hooper JE, Mostafa HH, Stewart CM. SARS-CoV-2 Virus Isolated From the Mastoid and Middle Ear: Implications for COVID-19 Precautions During Ear Surgery. JAMA Otolaryngol Head Neck Surg 2021; 146:964-966. [PMID: 32701126 DOI: 10.1001/jamaoto.2020.1922] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kaitlyn M Frazier
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jody E Hooper
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Heba H Mostafa
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - C Matthew Stewart
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Kaufman AC, Colquitt L, Ruckenstein MJ, Bigelow DC, Eliades SJ, Xiong G, Lin C, Reed DR, Cohen NA. Bitter Taste Receptors and Chronic Otitis Media. Otolaryngol Head Neck Surg 2021; 165:290-299. [PMID: 33433247 DOI: 10.1177/0194599820984788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To evaluate the presence of bitter taste receptors (T2Rs) in the middle ear and to examine their relationship with chronic ear infections. STUDY DESIGN Cross-sectional study. SETTING Tertiary care hospital. METHODS This study enrolled 84 patients being evaluated for otologic surgery: 40 for chronic otitis media (COM) and 44 for other surgical procedures (controls). We collected a small piece of mucosa from 14 patients for mRNA analysis and from 23 patients for immunohistochemistry. A total of 55 patients underwent a double-blind taste test to gauge sensitivity to phenylthiocarbamide, denatonium, quinine, sucrose, and sodium chloride; 47 patients gave a salivary sample for single-nucleotide polymorphism analysis of rs1376251 (TAS2R50) and rs1726866 (TAS2R38). RESULTS Bitter taste receptors were found in all samples, but the repertoire varied among patients. T2R50 was the most consistently identified receptor by mRNA analysis. Its rs1376251 allele was related to susceptibility to COM but not the expression pattern of T2R50. Ratings of bitterness intensity of phenylthiocarbamide, a ligand for T2R38, differed significantly between the COM and control groups. CONCLUSION T2Rs were found within the middle ear of every patient sampled; the rs1376251 allele of TAS2R50 appears to be related to chronic ear infections. These receptors are an intriguing target for future research and possible drug targeting.
Collapse
Affiliation(s)
- Adam C Kaufman
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Lauren Colquitt
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michael J Ruckenstein
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Douglas C Bigelow
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Steven J Eliades
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Guoxiang Xiong
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Danielle R Reed
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA.,Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Ura B, Celsi F, Zupin L, Arrigoni G, Battisti I, Gaita B, Grasso DL, Orzan E, Sagredini R, Barbi E, Crovella S. Proteomic Study Identifies Glycolytic and Inflammation Pathways Involved in Recurrent Otitis Media. Int J Mol Sci 2020; 21:ijms21239291. [PMID: 33291465 PMCID: PMC7731350 DOI: 10.3390/ijms21239291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
Recurrent acute otitis media (RAOM) in children is clinically defined as the occurrence of at least three episodes of acute otitis media over a course of 6 months. A further common pathological condition of interest in the context of pediatric otolaryngology is adenotonsillar hypertrophy (ATH), a common cause of obstructive sleep apnea syndrome. Aimed at unraveling the differential modulation of proteins in the two pathologies and at understanding the possible pathways involved in their onset, we analyzed the proteomic profile of the adenoids from 14 RAOM and ATH patients by using two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS). The 2-DE coupled with MS allowed us to identify 23 spots with significant (p-value < 0.05) changes in protein amount, recognizing proteins involved in neutrophil degranulation and glycolysis pathways.
Collapse
Affiliation(s)
- Blendi Ura
- Institute for Maternal and Child Health–IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (B.U.); (L.Z.); (B.G.); (D.L.G.); (E.O.); (R.S.); (E.B.)
| | - Fulvio Celsi
- Institute for Maternal and Child Health–IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (B.U.); (L.Z.); (B.G.); (D.L.G.); (E.O.); (R.S.); (E.B.)
- Correspondence: ; Tel.: +39-390403785216
| | - Luisa Zupin
- Institute for Maternal and Child Health–IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (B.U.); (L.Z.); (B.G.); (D.L.G.); (E.O.); (R.S.); (E.B.)
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (G.A.); (I.B.)
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Via G. Orus 2/B, 35129 Padova, Italy
- CRIBI Biotechnology Center, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| | - Ilaria Battisti
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (G.A.); (I.B.)
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Via G. Orus 2/B, 35129 Padova, Italy
| | - Bartolomea Gaita
- Institute for Maternal and Child Health–IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (B.U.); (L.Z.); (B.G.); (D.L.G.); (E.O.); (R.S.); (E.B.)
| | - Domenico Leonardo Grasso
- Institute for Maternal and Child Health–IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (B.U.); (L.Z.); (B.G.); (D.L.G.); (E.O.); (R.S.); (E.B.)
| | - Eva Orzan
- Institute for Maternal and Child Health–IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (B.U.); (L.Z.); (B.G.); (D.L.G.); (E.O.); (R.S.); (E.B.)
| | - Raffaella Sagredini
- Institute for Maternal and Child Health–IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (B.U.); (L.Z.); (B.G.); (D.L.G.); (E.O.); (R.S.); (E.B.)
| | - Egidio Barbi
- Institute for Maternal and Child Health–IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (B.U.); (L.Z.); (B.G.); (D.L.G.); (E.O.); (R.S.); (E.B.)
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Sergio Crovella
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University—Women′s College of Sciences Building, Doha 2713, Qatar;
| |
Collapse
|
7
|
Patrulea V, Borchard G, Jordan O. An Update on Antimicrobial Peptides (AMPs) and Their Delivery Strategies for Wound Infections. Pharmaceutics 2020; 12:E840. [PMID: 32887353 PMCID: PMC7560145 DOI: 10.3390/pharmaceutics12090840] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial infections occur when wound healing fails to reach the final stage of healing, which is usually hindered by the presence of different pathogens. Different topical antimicrobial agents are used to inhibit bacterial growth due to antibiotic failure in reaching the infected site, which is accompanied very often by increased drug resistance and other side effects. In this review, we focus on antimicrobial peptides (AMPs), especially those with a high potential of efficacy against multidrug-resistant and biofilm-forming bacteria and fungi present in wound infections. Currently, different AMPs undergo preclinical and clinical phase to combat infection-related diseases. AMP dendrimers (AMPDs) have been mentioned as potent microbial agents. Various AMP delivery strategies that are used to combat infection and modulate the healing rate-such as polymers, scaffolds, films and wound dressings, and organic and inorganic nanoparticles-have been discussed as well. New technologies such as Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated protein (CRISPR-Cas) are taken into consideration as potential future tools for AMP delivery in skin therapy.
Collapse
Affiliation(s)
- Viorica Patrulea
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland;
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland;
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Olivier Jordan
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland;
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|