1
|
Lyall LM, Stolicyn A, Lyall DM, Zhu X, Sangha N, Ward J, Strawbridge RJ, Cullen B, Smith DJ. Lifetime depression, sleep disruption and brain structure in the UK Biobank cohort. J Affect Disord 2025; 374:247-257. [PMID: 39719181 DOI: 10.1016/j.jad.2024.12.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
Whether depression and poor sleep interact or have statistically independent associations with brain structure and its change over time is not known. Within a subset of UK Biobank participants with neuroimaging and subjective and/or objective sleep data (n = 28,351), we examined associations between lifetime depression and sleep disruption, and their interaction with structural neuroimaging measures, both cross-sectionally and longitudinally. Sleep variables were: self-reported insomnia and difficulty getting up; actigraphy-derived short sleep (<7 h); sustained inactivity bouts during daytime (SIBD); and sleep efficiency. Imaging measures were white matter microstructure, subcortical volumes, cortical thickness and surface area of 24 cortical regions of interest. Individuals with lifetime depression (self-reported, mental health questionnaire or health records) were contrasted with healthy controls. Interactions between depression and difficulty getting up for i) right nucleus accumbens volume and ii) mean diffusivity of forceps minor, reflected a larger negative association of poor sleep in the presence vs. absence of depression. Depression was associated with widespread reductions in white matter integrity. Depression, higher SIBD and difficulty getting up were individually associated with smaller cortical volumes and surface area, particularly in the frontal and parietal lobes. Many regions showed age-related decline, but this was not exacerbated by either depression or sleep disturbance. Overall, we identified widespread cross-sectional associations of both lifetime depression and sleep measures with brain structure. Findings were more consistent with additive rather than synergistic effects - although in some regions we observed greater magnitude of deleterious associations from poor sleep phenotypes in the presence of depression.
Collapse
Affiliation(s)
- Laura M Lyall
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK; Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - Aleks Stolicyn
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Donald M Lyall
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK; Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Xingxing Zhu
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Natasha Sangha
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK; Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Joey Ward
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Rona J Strawbridge
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK; Health Data Research, Glasgow, UK; Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Breda Cullen
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Daniel J Smith
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Zhang H, Xu L, Yi X, Zhang X. Modulation mode of amygdala morphology and cognitive function under acute sleep deprivation in healthy male. Sleep Med 2025; 127:55-63. [PMID: 39799823 DOI: 10.1016/j.sleep.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The amygdala plays a crucial role in various behavioral functions and psychiatric conditions, with its morphology showing alterations in sleep disorders. While the impact of chronic sleep disorders on amygdala morphology has been studied, the effects of acute sleep deprivation (ASD) remain largely unexplored. The present study aimed to investigate the modulation between amygdala sub-region volumes and spatial working memory (SWM) performance under ASD conditions. Twenty-eight healthy male participants underwent MRI scanning and performed SWM tasks before and after 24 h of ASD. Amygdala sub-region volumes were segmented into nine sub-regions, and Granger causality analysis was employed to examine the relationship between amygdala morphology and SWM performance. Results revealed significant decreases in SWM accuracy and increases in reaction time following ASD. Localized changes in amygdala sub-regions were observed, with increased left cortico-amygdaloid transition area (CAT) volume and decreased right paralaminar nucleus (PL) volume. Granger causality analysis uncovered a bidirectional modulation between centromedial and cortical-like nuclei, and a progressive involvement of amygdala sub-regions in modulating SWM performance as task difficulty increased. These findings demonstrate a complex interplay between sleep, amygdala morphology, and cognitive function, suggesting that the amygdala plays a crucial role in modulating cognitive performance under ASD conditions. The differential involvement of amygdala sub-regions across varying cognitive loads indicates a flexible and adaptive system attempting to maintain performance in the face of sleep loss.
Collapse
Affiliation(s)
- Haoyuan Zhang
- School of Psychology, Northwest Normal University, Lanzhou, Gansu, China
| | - Lili Xu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiaohan Yi
- School of Psychology, Northwest Normal University, Lanzhou, Gansu, China
| | - Xiangzi Zhang
- School of Psychology, Northwest Normal University, Lanzhou, Gansu, China.
| |
Collapse
|
3
|
Zhao R, Wang FM, Cheng C, Li X, Wang Y, Zhang F, Li SG, Huang YH, Zhao ZY, Wei W, Zhang XD, Su XP, Yang XJ, Qin W, Sun JB. Effects of one night of sleep deprivation on whole brain intrinsic connectivity distribution using a graph theory neuroimaging approach. Sleep Med 2025; 125:89-99. [PMID: 39566269 DOI: 10.1016/j.sleep.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
Neuroimaging studies have revealed disturbances in brain functional connectivity (FC) after one night of sleep deprivation (SD). These researches explored the alterations of FC using classical regions of interest (ROI)-based analysis or functional connectivity density. However, these methods need for a priori information about the selected ROIs and a specific correlation threshold to define a connection between two ROIs or voxels, which may bring inconsistent results. In the present study, we adopted a data-driven, whole brain voxel-based graph-theoretical approach, intrinsic connectivity distribution (ICD) analysis, to examine changes of brain connectivity after SD in 52 normal young subjects without any prior knowledge. The cross-hemisphere ICD (ch-ICD) analysis was also performed to discover the effect of SD on cerebral lateralization. We found that sleep-deprived subjects showed significant reduced ICD in default mode network (DMN) and limbic network, and increased ICD in sensorimotor network. Furthermore, after SD, the ICD in the right precuneus showed significant correlation with psychomotor vigilance test (PVT) performance following the stepwise regression analysis after Bonferroni correction (ICD = 0.43 - 0.62∗10 % fast reaction time + 0.31∗the standard deviation of reaction time, p = 0.0012). Follow-up seed-based FC analyses in the right precuneus revealed decreased FC to regions in DMN, visual network, ventral attentional network and frontal-parietal network. Nevertheless, no striking difference of ch-ICD was found following SD. In conclusion, these findings suggested that DMN, especially precuneus may be hubs of FC disturbances associated with vigilance after SD, and may provide new insights into the intervention for SD.
Collapse
Affiliation(s)
- Rui Zhao
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Fu-Min Wang
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Chen Cheng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Xue Li
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Yin Wang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Fen Zhang
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Shan-Gang Li
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Yu-Hao Huang
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Zi-Yi Zhao
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Wei Wei
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Xiao-Dan Zhang
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Xue-Ping Su
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Xue-Juan Yang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Wei Qin
- Guangzhou Institute of Technology, Xidian University, Xi'an, Shaan xi, 710126, China; Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Jin-Bo Sun
- Guangzhou Institute of Technology, Xidian University, Xi'an, Shaan xi, 710126, China; Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaan xi, 710126, China.
| |
Collapse
|
4
|
Tian Y, Peng XR, Tang Z, Long Z, Xie C, Lei X. Enhanced diversity on connector hubs following sleep deprivation: Evidence from diffusion and functional magnetic resonance imaging. Neuroimage 2024; 299:120837. [PMID: 39241898 DOI: 10.1016/j.neuroimage.2024.120837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/08/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
Sleep deprivation has been demonstrated to exert widespread and intricate impacts on the brain network. The human brain network is a modular network composed of interconnected nodes. This network consists of provincial hubs and connector hubs, with provincial hubs having diverse connectivities within their own modules, while connector hubs distribute their connectivities across different modules. The latter is crucial for integrating information from various modules and ensuring the normal functioning of the modular brain. However, there has been a lack of systematic investigation into the impact of sleep deprivation on brain connector hubs. In this study, we utilized functional connectivity from resting-state functional magnetic resonance imaging, as well as structural connectivity from diffusion-weighted imaging, to systematically explore the variation of connector hub properties in the cerebral cortex after one night of sleep deprivation. The normalized participation coefficients (PCnorm) were utilized to identify connector hubs. In both the functional and structural networks, connector hubs exhibited a significant increase in average PCnorm, indicating the diversity enhancement of the connector hub following sleep deprivation. This enhancement is associated with increased network cost, reduced modularity, and decreased small-worldness, but enhanced global efficiency. This may potentially signify a compensatory mechanism within the brain following sleep deprivation. The significantly affected connector hubs were primarily observed in both the Control Network and Salience Network. We believe that the observed results reflect the increasing demand on the brain to invest more effort at preventing performance deterioration after sleep loss, in exchange for increased communication efficiency, especially involving systems responsible for neural resource allocation and cognitive control. These results have been replicated in an independent dataset. In conclusion, this study has enhanced our understanding of the compensatory mechanism in the brain response to sleep deprivation. This compensation is characterized by an enhancement in the connector hubs responsible for inter-modular communication, especially those related to neural resource and cognitive control. As a result, this compensation comes with a higher network cost but leads to an improvement in global communication efficiency, akin to a more random-like network manner.
Collapse
Affiliation(s)
- Yun Tian
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing 400715, China
| | - Xue-Rui Peng
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Zihan Tang
- Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing 400715, China
| | - Zhiliang Long
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing 400715, China
| | - Chao Xie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing 400715, China.
| |
Collapse
|
5
|
Lin YS, Lange D, Baur DM, Foerges A, Chu C, Li C, Elmenhorst EM, Neumaier B, Bauer A, Aeschbach D, Landolt HP, Elmenhorst D. Repeated caffeine intake suppresses cerebral grey matter responses to chronic sleep restriction in an A 1 adenosine receptor-dependent manner: a double-blind randomized controlled study with PET-MRI. Sci Rep 2024; 14:12724. [PMID: 38830861 PMCID: PMC11148136 DOI: 10.1038/s41598-024-61421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/03/2024] [Indexed: 06/05/2024] Open
Abstract
Evidence has shown that both sleep loss and daily caffeine intake can induce changes in grey matter (GM). Caffeine is frequently used to combat sleepiness and impaired performance caused by insufficient sleep. It is unclear (1) whether daily use of caffeine could prevent or exacerbate the GM alterations induced by 5-day sleep restriction (i.e. chronic sleep restriction, CSR), and (2) whether the potential impact on GM plasticity depends on individual differences in the availability of adenosine receptors, which are involved in mediating effects of caffeine on sleep and waking function. Thirty-six healthy adults participated in this double-blind, randomized, controlled study (age = 28.9 ± 5.2 y/; F:M = 15:21; habitual level of caffeine intake < 450 mg; 29 homozygous C/C allele carriers of rs5751876 of ADORA2A, an A2A adenosine receptor gene variant). Each participant underwent a 9-day laboratory visit consisting of one adaptation day, 2 baseline days (BL), 5-day sleep restriction (5 h time-in-bed), and a recovery day (REC) after an 8-h sleep opportunity. Nineteen participants received 300 mg caffeine in coffee through the 5 days of CSR (CAFF group), while 17 matched participants received decaffeinated coffee (DECAF group). We examined GM changes on the 2nd BL Day, 5th CSR Day, and REC Day using magnetic resonance imaging and voxel-based morphometry. Moreover, we used positron emission tomography with [18F]-CPFPX to quantify the baseline availability of A1 adenosine receptors (A1R) and its relation to the GM plasticity. The results from the voxel-wise multimodal whole-brain analysis on the Jacobian-modulated T1-weighted images controlled for variances of cerebral blood flow indicated a significant interaction effect between caffeine and CSR in four brain regions: (a) right temporal-occipital region, (b) right dorsomedial prefrontal cortex (DmPFC), (c) left dorsolateral prefrontal cortex (DLPFC), and (d) right thalamus. The post-hoc analyses on the signal intensity of these GM clusters indicated that, compared to BL, GM on the CSR day was increased in the DECAF group in all clusters but decreased in the thalamus, DmPFC, and DLPFC in the CAFF group. Furthermore, lower baseline subcortical A1R availability predicted a larger GM reduction in the CAFF group after CSR of all brain regions except for the thalamus. In conclusion, our data suggest an adaptive GM upregulation after 5-day CSR, while concomitant use of caffeine instead leads to a GM reduction. The lack of consistent association with individual A1R availability may suggest that CSR and caffeine affect thalamic GM plasticity predominantly by a different mechanism. Future studies on the role of adenosine A2A receptors in CSR-induced GM plasticity are warranted.
Collapse
Affiliation(s)
- Yu-Shiuan Lin
- Centre for Chronobiology, University Psychiatric Clinics Basel, Wilhelm Kleinstr. 27, 4002, Basel, Switzerland.
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
- Athinoula. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachussetts General Hospital, Harvard Medical School, Boston, USA.
| | - Denise Lange
- Department of Sleep and Human Factors, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Diego Manuel Baur
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Sleep & Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| | - Anna Foerges
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, North Rhine-Westphalia, Germany
- Department of Neurophysiology, Institute of Zoology (Bio-II), RWTH Aachen University, Aachen, Germany
| | - Congying Chu
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, North Rhine-Westphalia, Germany
| | - Changhong Li
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, North Rhine-Westphalia, Germany
| | - Eva-Maria Elmenhorst
- Department of Sleep and Human Factors, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Institute for Occupational, Social, and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine, INM-5, Forschungszentrum Jülich, Jülich, Germany
| | - Andreas Bauer
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, North Rhine-Westphalia, Germany
| | - Daniel Aeschbach
- Department of Sleep and Human Factors, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Sleep & Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| | - David Elmenhorst
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, North Rhine-Westphalia, Germany.
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Chu C, Holst SC, Elmenhorst EM, Foerges AL, Li C, Lange D, Hennecke E, Baur DM, Beer S, Hoffstaedter F, Knudsen GM, Aeschbach D, Bauer A, Landolt HP, Elmenhorst D. Total Sleep Deprivation Increases Brain Age Prediction Reversibly in Multisite Samples of Young Healthy Adults. J Neurosci 2023; 43:2168-2177. [PMID: 36804738 PMCID: PMC10039745 DOI: 10.1523/jneurosci.0790-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/22/2023] Open
Abstract
Sleep loss pervasively affects the human brain at multiple levels. Age-related changes in several sleep characteristics indicate that reduced sleep quality is a frequent characteristic of aging. Conversely, sleep disruption may accelerate the aging process, yet it is not known what will happen to the age status of the brain if we can manipulate sleep conditions. To tackle this question, we used an approach of brain age to investigate whether sleep loss would cause age-related changes in the brain. We included MRI data of 134 healthy volunteers (mean chronological age of 25.3 between the age of 19 and 39 years, 42 females/92 males) from five datasets with different sleep conditions. Across three datasets with the condition of total sleep deprivation (>24 h of prolonged wakefulness), we consistently observed that total sleep deprivation increased brain age by 1-2 years regarding the group mean difference with the baseline. Interestingly, after one night of recovery sleep, brain age was not different from baseline. We also demonstrated the associations between the change in brain age after total sleep deprivation and the sleep variables measured during the recovery night. By contrast, brain age was not significantly changed by either acute (3 h time-in-bed for one night) or chronic partial sleep restriction (5 h time-in-bed for five continuous nights). Together, the convergent findings indicate that acute total sleep loss changes brain morphology in an aging-like direction in young participants and that these changes are reversible by recovery sleep.SIGNIFICANCE STATEMENT Sleep is fundamental for humans to maintain normal physical and psychological functions. Experimental sleep deprivation is a variable-controlling approach to engaging the brain among different sleep conditions for investigating the responses of the brain to sleep loss. Here, we quantified the response of the brain to sleep deprivation by using the change of brain age predictable with brain morphologic features. In three independent datasets, we consistently found increased brain age after total sleep deprivation, which was associated with the change in sleep variables. Moreover, no significant change in brain age was found after partial sleep deprivation in another two datasets. Our study provides new evidence to explain the brainwide effect of sleep loss in an aging-like direction.
Collapse
Affiliation(s)
- Congying Chu
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, 52428 Jülich, Germany
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Sebastian C Holst
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8006 Zurich, Switzerland
| | - Eva-Maria Elmenhorst
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Anna L Foerges
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Neurophysiology, Institute of Zoology (Bio-II), RWTH Aachen University, 52074 Aachen, Germany
| | - Changhong Li
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Denise Lange
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Eva Hennecke
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Diego M Baur
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8006 Zurich, Switzerland
| | - Simone Beer
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Felix Hoffstaedter
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Daniel Aeschbach
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts 02115
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts 02115
- Institute of Experimental Epileptology and Cognition Research, Faculty of Medicine, University of Bonn, 53127, Bonn, Germany
| | - Andreas Bauer
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, 52428 Jülich, Germany
- Neurological Department, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8006 Zurich, Switzerland
- Sleep & Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| | - David Elmenhorst
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Division of Medical Psychology, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, 53127 Germany
| |
Collapse
|
7
|
Qi J, Li BZ, Zhang Y, Pan B, Gao YH, Zhan H, Liu Y, Shao YC, Zhang X. Altered Hypothalamic Functional Connectivity Following Total Sleep Deprivation in Young Adult Males. Front Neurosci 2021; 15:688247. [PMID: 34658753 PMCID: PMC8517525 DOI: 10.3389/fnins.2021.688247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/10/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Sleep deprivation can markedly influence vigilant attention that is essential to complex cognitive processes. The hypothalamus plays a critical role in arousal and attention regulation. However, the functional involvement of the hypothalamus in attentional impairments after total sleep deprivation (TSD) remains unclear. The purpose of this study is to investigate the alterations in hypothalamic functional connectivity and its association with the attentional performance following TSD. Methods: Thirty healthy adult males were recruited in the study. Participants underwent two resting-state functional magnetic resonance imaging (rs-fMRI) scans, once in rested wakefulness (RW) and once after 36 h of TSD. Seed-based functional connectivity analysis was performed using rs-fMRI for the left and right hypothalamus. Vigilant attention was measured using a psychomotor vigilance test (PVT). Furthermore, Pearson correlation analysis was conducted to investigate the relationship between altered hypothalamic functional connectivity and PVT performance after TSD. Results: After TSD, enhanced functional connectivity was observed between the left hypothalamus and bilateral thalamus, bilateral anterior cingulate cortex, right amygdala, and right insula, while reduced functional connectivity was observed between the left hypothalamus and bilateral middle frontal gyrus (AlphaSim corrected, P < 0.01). However, significant correlation between altered hypothalamic functional connectivity and PVT performance was not observed after Bonferroni correction (P > 0.05). Conclusion: Our results suggest that TSD can lead to disrupted hypothalamic circuits, which may provide new insight into neural mechanisms of attention impairments following sleep deprivation.
Collapse
Affiliation(s)
- Jing Qi
- School of Medicine, Nankai University, Tianjin, China.,Department of Neurology, The Second Medical Center, Sleep Medicine Research Center, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Bo-Zhi Li
- Department of Neurology, The Second Medical Center, Sleep Medicine Research Center, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhang
- The Eighth Medical Center of the General Hospital of People's Liberation Army, Beijing, China
| | - Bei Pan
- Air Force Medical Center, PLA, Beijing, China
| | - Yu-Hong Gao
- National Clinical Research Centre for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hao Zhan
- Air Force Medical Center, PLA, Beijing, China
| | - Yong Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Cong Shao
- Shool of Psychology, Beijing Sport University, Beijing, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xi Zhang
- School of Medicine, Nankai University, Tianjin, China.,Department of Neurology, The Second Medical Center, Sleep Medicine Research Center, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Qi J, Li BZ, Zhang Y, Pan B, Gao YH, Zhan H, Liu Y, Shao YC, Zhang X. Altered insula-prefrontal functional connectivity correlates to decreased vigilant attention after total sleep deprivation. Sleep Med 2021; 84:187-194. [PMID: 34166985 DOI: 10.1016/j.sleep.2021.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/02/2021] [Accepted: 05/30/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Sleep deprivation can robustly affect vigilant attention. The insula is a key hub of the salience network that mediates shifting attention between endogenous and exogenous states. However, little is known regarding the involvement of insular functional connectivity in impaired vigilant attention after total sleep deprivation (TSD). The purpose of this study is to explore the alterations in insular functional connectivity and its association with vigilant attention performance following TSD. METHODS Twenty-six adult men were enrolled in the study. Participants underwent two counterbalanced resting-state functional magnetic resonance imaging (rs-fMRI) scans, once in rested wakefulness (RW) and once after 36 h of TSD. Seed-based functional connectivity analysis was performed using rs-fMRI data for the left and right insula. The vigilant attention was measured using a psychomotor vigilance test (PVT). Furthermore, Pearson correlation analysis was conducted to investigate the relationship between altered insular functional connectivity and PVT performance. RESULTS Compared to RW, enhanced functional connectivity was observed between the insula and prefrontal cortex and anterior cingulate cortex, while reduced functional connectivity was observed between the insula and temporal, parietal, and occipital regions following TSD. Moreover, altered insular functional connectivity with the prefrontal cortex, ie superior frontal gyrus and middle frontal gyrus, and inferior temporal gyrus was correlated with PVT performance after TSD. CONCLUSION Our results suggest that insular coupling with the prefrontal cortex and inferior temporal gyrus may act as neural indicators for vigilant attention impairment, which further reveals the critical role of the salience network in cognitive decline following TSD.
Collapse
Affiliation(s)
- Jing Qi
- School of Medicine, Nankai University, Tianjin, 300071, China; Department of Neurology, The Second Medical Center, Sleep Medicine Research Center, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Bo-Zhi Li
- Department of Neurology, The Second Medical Center, Sleep Medicine Research Center, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ying Zhang
- The Eighth Medical Center of the General Hospital of People's Liberation Army, Beijing, 100091, China
| | - Bei Pan
- Airforce Medical Center, PLA, Beijing, 100142, China
| | - Yu-Hong Gao
- National Clinical Research Centre for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hao Zhan
- Airforce Medical Center, PLA, Beijing, 100142, China
| | - Yong Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Cong Shao
- School of Psychology, Beijing Sport University, Beijing, 100084, China; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Xi Zhang
- Department of Neurology, The Second Medical Center, Sleep Medicine Research Center, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China; School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
9
|
Castells-Sánchez A, Roig-Coll F, Dacosta-Aguayo R, Lamonja-Vicente N, Sawicka AK, Torán-Monserrat P, Pera G, Montero-Alía P, Heras-Tebar A, Domènech S, Via M, Erickson KI, Mataró M. Exercise and Fitness Neuroprotective Effects: Molecular, Brain Volume and Psychological Correlates and Their Mediating Role in Healthy Late-Middle-Aged Women and Men. Front Aging Neurosci 2021; 13:615247. [PMID: 33776741 PMCID: PMC7989549 DOI: 10.3389/fnagi.2021.615247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Although exercise is known to have a neuroprotective effect in aging, the mediators underlying the exercise-cognition association remain poorly understood. In this paper we aimed to study the molecular, brain, and behavioral changes related to physical activity and their potential role as mediators. Methods: We obtained demographic, physical activity outcomes [sportive physical activity and cardiorespiratory fitness (CRF)], plasma biomarkers (TNF-α, ICAM-1, HGF, SDF1-α, and BDNF), structural-MRI (brain volume areas), psychological and sleep health (mood, depressive and distress symptoms, and sleep quality), and multi-domain cognitive data from 115 adults aged 50-70 years. We conducted linear regression models and mediation analyses stratifying results by sex in a final sample of 104 individuals [65 women (age = 56.75 ± 4.96) and 39 men (age = 58.59 ± 5.86)]. Results: Women engaging in greater amounts of exercising showed lower TNF-α levels and greater dorsolateral prefrontal cortex and temporal lobe volumes. Men engaging in greater amounts of exercise showed greater temporal lobe volumes. CRF levels were not related to any of the analyzed outcomes in women but in men higher CRF was associated with lower TNF-α, HGF and ventricle volumes, greater volume of temporal and parietal lobes and fewer depressive symptoms and better mood. In men, reduced TNF-α and HGF levels mediated brain and cognitive CRF-related benefits. Conclusion: Our results show that exercise is a promising approach for influencing inflammation and brain volume and also contributes to ongoing discussions about the physiological mediators for the association between CRF and cognition in men.
Collapse
Affiliation(s)
- Alba Castells-Sánchez
- Departament of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain.,Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Francesca Roig-Coll
- Departament of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
| | - Rosalia Dacosta-Aguayo
- Departament of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
| | - Noemí Lamonja-Vicente
- Departament of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain.,Institut de Neurociències, University of Barcelona, Barcelona, Spain.,Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Angelika K Sawicka
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdansk, Gdansk, Poland
| | - Pere Torán-Monserrat
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
| | - Guillem Pera
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
| | - Pilar Montero-Alía
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
| | - Antonio Heras-Tebar
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
| | - Sira Domènech
- Institut de Diagnòstic per la Imatge, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Marc Via
- Departament of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain.,Institut de Neurociències, University of Barcelona, Barcelona, Spain.,Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Maria Mataró
- Departament of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain.,Institut de Neurociències, University of Barcelona, Barcelona, Spain.,Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| |
Collapse
|
10
|
Long Z, Cheng F, Lei X. Correction: Age effect on gray matter volume changes after sleep restriction. PLoS One 2021; 16:e0246799. [PMID: 33539445 PMCID: PMC7861364 DOI: 10.1371/journal.pone.0246799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0228473.].
Collapse
|
11
|
Long Z, Zhao J, Chen D, Lei X. Age-related abnormalities of thalamic shape and dynamic functional connectivity after three hours of sleep restriction. PeerJ 2021; 9:e10751. [PMID: 33569254 PMCID: PMC7845526 DOI: 10.7717/peerj.10751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/19/2020] [Indexed: 11/23/2022] Open
Abstract
Background Previous neuroimaging studies have detected abnormal activation and intrinsic functional connectivity of the thalamus after total sleep deprivation. However, very few studies have investigated age-related changes in the dynamic functional connectivity of the thalamus and the abnormalities in the thalamic shape following partial sleep deprivation. Methods Fifty-five participants consisting of 23 old adults (mean age: 68.8 years) and 32 young adults (mean age: 23.5 years) were included in current study. A vertex-based shape analysis and a dynamic functional connectivity analysis were used to evaluate the age-dependent structural and functional abnormalities after three hours of sleep restriction. Results Shape analysis revealed the significant main effect of deprivation with local atrophy in the left thalamus. In addition, we observed a significant age deprivation interaction effect with reduced variability of functional connectivity between the left thalamus and the left superior parietal cortex following sleep restriction. This reduction was found only in young adults. Moreover, a significantly negative linear correlation was observed between the insomnia severity index and the changes of variability (post-deprivation minus pre-deprivation) in the functional connectivity of the left thalamus with the left superior parietal cortex. Conclusions The results indicated that three hours of sleep restriction could affect both the thalamic structure and its functional dynamics. They also highlighted the role of age in studies of sleep deprivation.
Collapse
Affiliation(s)
- Zhiliang Long
- Sleep and NeuroImaging Center, Faculty of Psychology, University of the Southwest, Chongqing, China.,Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China
| | - Jia Zhao
- Sleep and NeuroImaging Center, Faculty of Psychology, University of the Southwest, Chongqing, China
| | - Danni Chen
- Sleep and NeuroImaging Center, Faculty of Psychology, University of the Southwest, Chongqing, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, University of the Southwest, Chongqing, China.,Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China
| |
Collapse
|
12
|
Wang C, Zhang P, Wang C, Yang L, Zhang X. Cortical Thinning and Abnormal Structural Covariance Network After Three Hours Sleep Restriction. Front Psychiatry 2021; 12:664811. [PMID: 34354607 PMCID: PMC8329354 DOI: 10.3389/fpsyt.2021.664811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022] Open
Abstract
Sleep loss leads to serious health problems, impaired attention, and emotional processing. It has been suggested that the abnormal neurobehavioral performance after sleep deprivation was involved in dysfunction of specific functional connectivity between brain areas. However, to the best of our knowledge, there was no study investigating the structural connectivity mechanisms underlying the dysfunction at network level. Surface morphological analysis and graph theoretical analysis were employed to investigate changes in cortical thickness following 3 h sleep restriction, and test whether the topological properties of structural covariance network was affected by sleep restriction. We found that sleep restriction significantly decreased cortical thickness in the right parieto-occipital cortex (Brodmann area 19). In addition, graph theoretical analysis revealed significantly enhanced global properties of structural covariance network including clustering coefficient and local efficiency, and increased nodal properties of the left insula cortex including nodal efficiency and betweenness, after 3 h sleep restriction. These results provided insights into understanding structural mechanisms of dysfunction of large-scale functional networks after sleep restriction.
Collapse
Affiliation(s)
- Chaoyan Wang
- Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Henan, China
| | - Peng Zhang
- Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Henan, China
| | - Caihong Wang
- Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Henan, China
| | - Lu Yang
- Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Henan, China
| | - Xinzhong Zhang
- Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Henan, China
| |
Collapse
|