1
|
Monecke S, Burgold-Voigt S, Braun SD, Diezel C, Liebler-Tenorio EM, Müller E, Nassar R, Reinicke M, Reissig A, Senok A, Ehricht R. Characterisation of PVL-Positive Staphylococcus argenteus from the United Arab Emirates. Antibiotics (Basel) 2024; 13:401. [PMID: 38786130 PMCID: PMC11117363 DOI: 10.3390/antibiotics13050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Staphylococcus argenteus is a recently described staphylococcal species that is related to Staphylococcus aureus but lacks the staphyloxanthin operon. It is able to acquire both resistance markers such as the SCCmec elements and mobile genetic elements carrying virulence-associated genes from S. aureus. This includes those encoding the Panton-Valentine leukocidin (PVL), which is associated mainly with severe and/or recurrent staphylococcal skin and soft tissue infections. Here, we describe the genome sequences of two PVL-positive, mecA-negative S. argenteus sequence type (ST) 2250 isolates from the United Arab Emirates in detail. The isolates were found in a dental clinic in the United Arab Emirates (UAE). Both were sequenced using Oxford Nanopore Technology (ONT). This demonstrated the presence of temperate bacteriophages in the staphylococcal genomes, including a PVL prophage. It was essentially identical to the published sequence of phiSa2wa_st78 (GenBank NC_055048), a PVL phage from an Australian S. aureus clonal complex (CC) 88 isolate. Besides the PVL prophage, one isolate carried another prophage and the second isolate carried two additional prophages, whereby the region between these two prophages was inverted. This "flipped" region comprised about 1,083,000 bp, or more than a third of the strain's genome, and it included the PVL prophage. Prophages were induced by Mitomycin C treatment and subjected to transmission electron microscopy (TEM). This yielded, in accordance to the sequencing results, one or, respectively, two distinct populations of icosahedral phages. It also showed prolate phages which presumptively might be identified as the PVL phage. This observation highlights the significance bacteriophages have as agents of horizontal gene transfer as well as the need for monitoring emerging staphylococcal strains, especially in cosmopolitan settings such as the UAE.
Collapse
Affiliation(s)
- Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany (A.R.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Sindy Burgold-Voigt
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany (A.R.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Sascha D. Braun
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany (A.R.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany (A.R.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | | | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany (A.R.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Rania Nassar
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates (A.S.)
| | - Martin Reinicke
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany (A.R.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Annett Reissig
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany (A.R.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates (A.S.)
- School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany (A.R.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
| |
Collapse
|
2
|
Ramsay JP, Parahitiyawa N, Mowlaboccus S, Mullally CA, Yee NW, Shoby P, Colombi E, Tan HL, Pearson JC, Coombs GW. Genomic characterization of a unique Panton-Valentine leucocidin-positive community-associated methicillin-resistant Staphylococcus aureus lineage increasingly impacting on Australian indigenous communities. Microb Genom 2023; 9:001172. [PMID: 38117559 PMCID: PMC10763498 DOI: 10.1099/mgen.0.001172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023] Open
Abstract
In 2010 a single isolate of a trimethoprim-resistant multilocus sequence type 5, Panton-Valentine leucocidin-positive, community-associated methicillin-resistant Staphylococcus aureus (PVL-positive ST5 CA-MRSA), colloquially named WA121, was identified in northern Western Australia (WA). WA121 now accounts for ~14 % of all WA MRSA infections. To gain an understanding of the genetic composition and phylogenomic structure of WA121 isolates we sequenced the genomes of 155 WA121 isolates collected 2010-2021 and present a detailed genomic description. WA121 was revealed to be a single clonally expanding lineage clearly distinct from sequenced ST5 strains reported outside Australia. WA121 strains were typified by the presence of the distinct PVL phage φSa2wa-st5, the recently described methicillin resistance element SCCmecIVo carrying the trimethoprim resistance (dfrG) transposon Tn4791, the novel β-lactamase transposon Tn7702 and the epidermal cell differentiation inhibitor (EDIN-A) plasmid p2010-15611-2. We present evidence that SCCmecIVo together with Tn4791 has horizontally transferred to Staphylococcus argenteus and evidence of intragenomic movement of both Tn4791 and Tn7702. We experimentally demonstrate that p2010-15611-2 is capable of horizontal transfer by conjugative mobilization from one of several WA121 isolates also harbouring a pWBG749-like conjugative plasmid. In summary, WA121 is a distinct and clonally expanding Australian PVL-positive CA-MRSA lineage that is increasingly responsible for infections in indigenous communities in northern and western Australia. WA121 harbours a unique complement of mobile genetic elements and is capable of transferring antimicrobial resistance and virulence determinants to other staphylococci.
Collapse
Affiliation(s)
- Joshua P. Ramsay
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Nipuna Parahitiyawa
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Shakeel Mowlaboccus
- Microbiology Department, Fiona Stanley Hospital, PathWest Laboratory Medicine, Murdoch, WA, Australia
- Antimicrobial Resistance and Infectious Disease (AMRID) Research Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Christopher A. Mullally
- Antimicrobial Resistance and Infectious Disease (AMRID) Research Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Nicholas W.T. Yee
- Antimicrobial Resistance and Infectious Disease (AMRID) Research Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Princy Shoby
- Antimicrobial Resistance and Infectious Disease (AMRID) Research Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Elena Colombi
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Hui-Leen Tan
- Microbiology Department, Fiona Stanley Hospital, PathWest Laboratory Medicine, Murdoch, WA, Australia
| | - Julie C. Pearson
- Microbiology Department, Fiona Stanley Hospital, PathWest Laboratory Medicine, Murdoch, WA, Australia
| | - Geoffrey W. Coombs
- Microbiology Department, Fiona Stanley Hospital, PathWest Laboratory Medicine, Murdoch, WA, Australia
- Antimicrobial Resistance and Infectious Disease (AMRID) Research Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| |
Collapse
|
3
|
Ferreira RM, Dos Santos Silva DH, Silva KF, de Melo Monteiro J, Ferreira GF, Silva MRC, da Silva LCN, de Castro Oliveira L, Monteiro AS. Draft genome sequence of Staphylococcus aureus sequence type 5 SA01 isolated from bloodstream infection and comparative analysis with reference strains. Funct Integr Genomics 2023; 23:288. [PMID: 37653266 DOI: 10.1007/s10142-023-01204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
A Staphylococcus aureus isolate (SA01) obtained from bloodstream infection exhibited a remarkable drug resistance profile. In this study, we report the draft genome sequence of S. aureus ST 5 SA01, a multidrug-resistant isolate, and analyzed the genes associated with drug resistance and virulence. The genome sketch of S. aureus ST5 SA01 was sequenced with Illumina and annotated using the Prokka software. Rapid Annotation Subsystem Technology (RAST) was used to verify the gene functions in the genome subsystems. The Comprehensive Antibiotic Resistance Database (CARD) and Virulence Factor Database (VFDB) were used in the analysis. The RAST indicated a contribution of 25 proteins to host adenine, fibronectin-binding protein A (FnbA), and biofilm formation as an intercellular polysaccharide adhesive system (PIA). The MLST indicated that S. aureus ST 5 SA01 belongs to ST5 (CC5). In silico analyses also showed an extensive repertoire of genes associated with toxins, such as LukGH leukocidin, enterotoxins, and superantigen staphylococcal classes (SSL). The 11 genes for antimicrobial resistance in S. aureus ST 5 SA01 showed similarity and identity above ≥ 99% with nucleotide sequences deposited in GenBank. Although studies on ST5 clones in Brazil are scarce, monitoring the clone of S. aureus ST 5 SA01 is essential, as it has become a problem in pediatrics in several countries.
Collapse
Affiliation(s)
- Romulo Maia Ferreira
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís, 65075-120, MA, Brasil
| | | | - Karinny Farias Silva
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís, 65075-120, MA, Brasil
| | | | - Gabriella Freitas Ferreira
- Departamento de Farmácia, Universidade Federal de Juiz de Fora - Campus Governador Valadares, CEP 35010-180, Juiz de Fora, MG, Brasil
| | | | | | - Letícia de Castro Oliveira
- Departamento de Microbiologia, Universidade Federal Do Triângulo Mineiro, Imunologia E Parasitologia, 38025180, Uberaba, MG, Brasil
| | - Andrea Souza Monteiro
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís, 65075-120, MA, Brasil
| |
Collapse
|
4
|
Hou Z, Liu L, Wei J, Xu B. Progress in the Prevalence, Classification and Drug Resistance Mechanisms of Methicillin-Resistant Staphylococcus aureus. Infect Drug Resist 2023; 16:3271-3292. [PMID: 37255882 PMCID: PMC10226514 DOI: 10.2147/idr.s412308] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
Staphylococcus aureus is a common human pathogen with a variety of virulence factors, which can cause multiple infectious diseases. In recent decades, due to the constant evolution and the abuse of antibiotics, Staphylococcus aureus was becoming more resistant, the infection rate of MRSA remained high, and clinical treatment of MRSA became more difficult. The genetic diversity of MRSA was mainly represented by the continuous emergence of epidemic strains, resulting in the constant changes of epidemic clones. Different classes of MRSA resulted in different epidemics and resistance characteristics, which could affect the clinical symptoms and treatments. MRSA had also spread from traditional hospitals to community and livestock environments, and the new clones established a relationship between animals and humans, promoting further evolution of MRSA. Since the resistance mechanism of MRSA is very complex, it is important to clarify these resistance mechanisms at the molecular level for the treatment of infectious diseases. We firstly described the diversity of SCCmec elements, and discussed the types of SCCmec, its drug resistance mechanisms and expression regulations. Then, we described how the vanA operon makes Staphylococcus aureus resistant to vancomycin and its expression regulation. Finally, a brief introduction was given to the drug resistance mechanisms of biofilms and efflux pump systems. Analyzing the resistance mechanism of MRSA can help study new anti-infective drugs and alleviate the evolution of MRSA. At the end of the review, we summarized the treatment strategies for MRSA infection, including antibiotics, anti-biofilm agents and efflux pump inhibitors. To sum up, here we reviewed the epidemic characteristics of Staphylococcus aureus, summarized its classifications, drug resistance mechanisms of MRSA (SCCmec element, vanA operon, biofilm and active efflux pump system) and novel therapy strategies, so as to provide a theoretical basis for the treatment of MRSA infection.
Collapse
Affiliation(s)
- Zhuru Hou
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
| | - Ling Liu
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Benjin Xu
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| |
Collapse
|
5
|
Ba X, Matuszewska M, Kalmar L, Fan J, Zou G, Corander D, Raisen CL, Li S, Li L, Weinert LA, Tucker AW, Grant AJ, Zhou R, Holmes MA. High-Throughput Mutagenesis Reveals a Role for Antimicrobial Resistance- and Virulence-Associated Mobile Genetic Elements in Staphylococcus aureus Host Adaptation. Microbiol Spectr 2023; 11:e0421322. [PMID: 36815781 PMCID: PMC10101091 DOI: 10.1128/spectrum.04213-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) clonal-complex 398 (CC398) is the dominant livestock-associated (LA) MRSA lineage in European livestock and an increasing cause of difficult-to-treat human disease. LA-CC398 MRSA evolved from a diverse human-associated methicillin-sensitive population, and this transition from humans to livestock was associated with three mobile genetic elements (MGEs). In this study, we apply transposon-directed insertion site sequencing (TraDIS), a high-throughput transposon mutagenesis approach, to investigate genetic signatures that contribute to LA-CC398 causing disease in humans. We identified 26 genes associated with LA-CC398 survival in human blood and 47 genes in porcine blood. We carried out phylogenetic reconstruction on 1,180 CC398 isolates to investigate the genetic context of all identified genes. We found that all genes associated with survival in human blood were part of the CC398 core genome, while 2/47 genes essential for survival in porcine blood were located on MGEs. Gene SAPIG0966 was located on the previously identified Tn916 transposon carrying a tetracycline resistance gene, which has been shown to be stably inherited within LA-CC398. Gene SAPIG1525 was carried on a phage element, which in part, matched phiSa2wa_st1, a previously identified bacteriophage carrying the Panton-Valentine leucocidin (PVL) virulence factor. Gene deletion mutants constructed in two LA-CC398 strains confirmed that the SAPIG0966 carrying Tn916 and SAPIG1525 were important for CC398 survival in porcine blood. Our study shows that MGEs that carry antimicrobial resistance and virulence genes could have a secondary function in bacterial survival in blood and may be important for host adaptation. IMPORTANCE CC398 is the dominant type of methicillin-resistant Staphylococcus aureus (MRSA) in European livestock and a growing cause of human infections. Previous studies have suggested MRSA CC398 evolved from human-associated methicillin-sensitive Staphylococcus aureus and is capable of rapidly readapting to human hosts while maintaining antibiotic resistance. Using high-throughput transposon mutagenesis, our study identified 26 and 47 genes important for MRSA CC398 survival in human and porcine blood, respectively. Two of the genes important for MRSA CC398 survival in porcine blood were located on mobile genetic elements (MGEs) carrying resistance or virulence genes. Our study shows that these MGEs carrying antimicrobial resistance and virulence genes could have a secondary function in bacterial survival in blood and may be important for blood infection and host adaptation.
Collapse
Affiliation(s)
- Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Marta Matuszewska
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lajos Kalmar
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jingyan Fan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
| | - Desirée Corander
- Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Claire L. Raisen
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
- Cooperative Innovation Centre of Sustainable Pig Production, Wuhan, China
- International Research Centre for Animal Diseases (MOST), Wuhan, China
| | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alexander W. Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J. Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
- Cooperative Innovation Centre of Sustainable Pig Production, Wuhan, China
- International Research Centre for Animal Diseases (MOST), Wuhan, China
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Staphylococcus aureus Prophage-Encoded Protein Causes Abortive Infection and Provides Population Immunity against Kayviruses. mBio 2023; 14:e0249022. [PMID: 36779718 PMCID: PMC10127798 DOI: 10.1128/mbio.02490-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Both temperate and obligately lytic phages have crucial roles in the biology of staphylococci. While superinfection exclusion among closely related temperate phages is a well-characterized phenomenon, the interactions between temperate and lytic phages in staphylococci are not understood. Here, we present a resistance mechanism toward lytic phages of the genus Kayvirus, mediated by the membrane-anchored protein designated PdpSau encoded by Staphylococcus aureus prophages, mostly of the Sa2 integrase type. The prophage accessory gene pdpSau is strongly linked to the lytic genes for holin and ami2-type amidase and typically replaces genes for the toxin Panton-Valentine leukocidin (PVL). The predicted PdpSau protein structure shows the presence of a membrane-binding α-helix in its N-terminal part and a cytoplasmic positively charged C terminus. We demonstrated that the mechanism of action of PdpSau does not prevent the infecting kayvirus from adsorbing onto the host cell and delivering its genome into the cell, but phage DNA replication is halted. Changes in the cell membrane polarity and permeability were observed from 10 min after the infection, which led to prophage-activated cell death. Furthermore, we describe a mechanism of overcoming this resistance in a host-range Kayvirus mutant, which was selected on an S. aureus strain harboring prophage 53 encoding PdpSau, and in which a chimeric gene product emerged via adaptive laboratory evolution. This first case of staphylococcal interfamily phage-phage competition is analogous to some other abortive infection defense systems and to systems based on membrane-destructive proteins. IMPORTANCE Prophages play an important role in virulence, pathogenesis, and host preference, as well as in horizontal gene transfer in staphylococci. In contrast, broad-host-range lytic staphylococcal kayviruses lyse most S. aureus strains, and scientists worldwide have come to believe that the use of such phages will be successful for treating and preventing bacterial diseases. The effectiveness of phage therapy is complicated by bacterial resistance, whose mechanisms related to therapeutic staphylococcal phages are not understood in detail. In this work, we describe a resistance mechanism targeting kayviruses that is encoded by a prophage. We conclude that the defense mechanism belongs to a broader group of abortive infections, which is characterized by suicidal behavior of infected cells that are unable to produce phage progeny, thus ensuring the survival of the host population. Since the majority of staphylococcal strains are lysogenic, our findings are relevant for the advancement of phage therapy.
Collapse
|
7
|
Aloba BK, Kinnevey PM, Monecke S, Brennan GI, O'Connell B, Blomfeldt A, McManus BA, Schneider-Brachert W, Tkadlec J, Ehricht R, Senok A, Bartels MD, Coleman DC. An emerging Panton-Valentine leukocidin-positive CC5-meticillin-resistant Staphylococcus aureus-IVc clone recovered from hospital and community settings over a 17-year period from 12 countries investigated by whole-genome sequencing. J Hosp Infect 2023; 132:8-19. [PMID: 36481685 DOI: 10.1016/j.jhin.2022.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND A novel Panton-Valentine leukocidin (PVL)-positive meticillin-resistant Staphylococcus aureus (MRSA) clonal complex (CC)5-MRSA-IVc ('Sri Lankan' clone) was recently described from Sri Lanka. Similar isolates caused a recent Irish hospital outbreak. AIM To investigate the international dissemination and diversity of PVL-positive CC5-MRSA-IVc isolates from hospital and community settings using whole-genome sequencing (WGS). METHODS Core-genome single nucleotide polymorphism (cgSNP) analysis, core-genome multi-locus sequence typing (cgMLST) and microarray-based detection of antimicrobial-resistance and virulence genes were used to investigate PVL-positive CC5-MRSA-IVc (N = 214 including 46 'Sri Lankan' clone) from hospital and community settings in 12 countries over 17 years. Comparators included 29 PVL-positive and 23 PVL-negative CC5/ST5-MRSA-I/II/IVa/IVc/IVg/V. RESULTS Maximum-likelihood cgSNP analysis grouped 209/214 (97.7%) CC5-MRSA-IVc into Clade I; average of 110 cgSNPs between isolates. Clade III contained the five remaining CC5-MRSA-IVc; average of 92 cgSNPs between isolates. Clade II contained seven PVL-positive CC5-MRSA-IVa comparators, whereas the remaining 45 comparators formed an outlier group. Minimum-spanning cgMLST analysis revealed a comparably low average of 57 allelic differences between all CC5/ST5-MRSA-IVc. All 214 CC5/ST5-MRSA-IVc were identified as 'Sri Lankan' clone, predominantly spa type t002 (186/214) with low population diversity and harboured a similar range of virulence genes and variable antimicrobial-resistance genes. All 214 Sri Lankan clone isolates and Clade II comparators harboured a 9616-bp chromosomal PVL-encoding phage remnant, suggesting both arose from a PVL-positive meticillin-susceptible ancestor. Over half of Sri Lankan clone isolates were from infections (142/214), and where detailed metadata were available (168/214), most were community associated (85/168). CONCLUSIONS Stable chromosomal retention of pvl may facilitate Sri-Lankan clone dissemination.
Collapse
Affiliation(s)
- B K Aloba
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - P M Kinnevey
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - S Monecke
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany; Institut für Medizinische Mikrobiologie und Virologie, Uniklinikum Dresden, Dresden, Germany; InfectoGnostics Research Campus, Jena, Germany
| | - G I Brennan
- National MRSA Reference Laboratory, St. James's Hospital, Dublin, Ireland
| | - B O'Connell
- Department of Clinical Microbiology, St. James's Hospital, Dublin, Ireland
| | - A Blomfeldt
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
| | - B A McManus
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - W Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - J Tkadlec
- Department of Medical Microbiology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - R Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany; InfectoGnostics Research Campus, Jena, Germany; Institute of Physical Chemistry, Friedrich-Schiller University, Jena, Germany
| | - A Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - M D Bartels
- Department of Clinical Microbiology, Amager and Hvidovre Hospital, Hvidovre, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - D C Coleman
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
8
|
Ribeiro HG, Nilsson A, Melo LDR, Oliveira A. Analysis of intact prophages in genomes of Paenibacillus larvae: An important pathogen for bees. Front Microbiol 2022; 13:903861. [PMID: 35923395 PMCID: PMC9341999 DOI: 10.3389/fmicb.2022.903861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Paenibacillus larvae is the etiological agent of American Foulbrood (AFB), a highly contagious and worldwide spread bacterial disease that affects honeybee brood. In this study, all complete P. larvae genomes available on the NCBI database were analyzed in order to detect presence of prophages using the PHASTER software. A total of 55 intact prophages were identified in 11 P. larvae genomes (5.0 ± 2.3 per genome) and were further investigated for the presence of genes encoding relevant traits related to P. larvae. A closer look at the prophage genomes revealed the presence of several putative genes such as metabolic and antimicrobial resistance genes, toxins or bacteriocins, potentially influencing host performance. Some of the coding DNA sequences (CDS) were present in all ERIC-genotypes, while others were only found in a specific genotype. While CDS encoding toxins and antitoxins such as HicB and MazE were found in prophages of all bacterial genotypes, others, from the same category, were provided by prophages particularly to ERIC I (enhancin-like toxin), ERIC II (antitoxin SocA) and ERIC V strains (subunit of Panton-Valentine leukocidin system (PVL) LukF-PV). This is the first in-depth analysis of P. larvae prophages. It provides better knowledge on their impact in the evolution of virulence and fitness of P. larvae, by discovering new features assigned by the viruses.
Collapse
Affiliation(s)
- Henrique G. Ribeiro
- LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Anna Nilsson
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Luís D. R. Melo
- LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, Centre of Biological Engineering, University of Minho, Braga, Portugal
- *Correspondence: Luís D. R. Melo,
| | - Ana Oliveira
- LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, Centre of Biological Engineering, University of Minho, Braga, Portugal
- Ana Oliveira,
| |
Collapse
|
9
|
The pro-inflammatory effect of Staphylokinase contributes to community-associated Staphylococcus aureus pneumonia. Commun Biol 2022; 5:618. [PMID: 35739262 PMCID: PMC9226170 DOI: 10.1038/s42003-022-03571-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
Pneumonia caused by community-associated Staphylococcus aureus (CA-SA) has high morbidity and mortality, but its pathogenic mechanism remains to be further investigated. Herein, we identify that staphylokinase (SAK) is significantly induced in CA-SA and inhibits biofilm formation in a plasminogen-dependent manner. Importantly, SAK can enhance CA-SA-mediated pneumonia in both wild-type and cathelicidins-related antimicrobial peptide knockout (CRAMP−/−) mice, suggesting that SAK exacerbates pneumonia in a CRAMP-independent manner. Mechanistically, SAK induces pro-inflammatory effects, especially in the priming step of NLRP3 inflammasome activation. Moreover, we demonstrate that SAK can increase K+ efflux, production of reactive oxygen species production, and activation of NF-κB signaling. Furthermore, the NLRP3 inflammasome inhibitor can counteract the effective of SAK induced CA-SA lung infection in mice. Taken together, we speculate that SAK exacerbates CA-SA-induced pneumonia by promoting NLRP3 inflammasome activation, providing new insights into the pathogenesis of highly virulent CA-SA and emphasizes the importance of controlling inflammation in acute pneumonia. Staphylokinase (Sak) is highly prevalent in human-adapted S. aureus strains, with increased expression in community-associated (CA-SA) strains, promoting lung infection and activation of the NLRP3 inflammasome.
Collapse
|
10
|
Zhang L, Shahin K, Soleimani-Delfan A, Ding H, Wang H, Sun L, Wang R. Phage JS02, a putative temperate phage, a novel biofilm-degrading agent for Staphylococcus aureus. Lett Appl Microbiol 2022; 75:643-654. [PMID: 35100443 DOI: 10.1111/lam.13663] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus is a biofilm-producing organism that is frequently isolated from various environments worldwide. Because of the natural resistance of S. aureus biofilm to antibiotics, bacteriophages are considered as a promising alternative for its removal. The bacteriophage vB_SauS_JS02 was isolated from livestock wastewater and showed activity against multidrug-resistant (MDR) S. aureus. The phage vB_SauS_JS02 exhibited broad host range and possessed a large burst size (52 PFU/CFU) as well as moderate pH stability (4-11) and appropriate thermal tolerance (40-50 ºC). Electron microscopy and genome sequence revealed that vB_SauS_JS02 belonged to Triavirus genus in Siphoviridae family. Genetic analysis of the 46 kb sequence of vB_SauS_JS02 revealed 66 ORFs. The predicted protein products of the ORFs were clustered functionally into five groups as follows: replication/regulation, DNA packaging, structure/morphogenesis, lysis, and lysogeny. Although the phage vB_SauS_JS02 was a temperate phage, it exhibited a higher inhibiting and degrading activity against planktonic cells (80~90% reduction), even to S. aureus biofilm (∼68% reduction in biofilm formation). Moreover, the removal activity of the phage vB_SauS_JS02 against both planktonic cells and S. aureus biofilms was even better than that of the antibiotic (ceftazidime). In summary, the present study introduced the phage vB_SauS_JS02 as a potential biocontrol agent against biofilm-producing S. aureus after making it virulent. It may be applicable for phage therapy.
Collapse
Affiliation(s)
- Lili Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Khashayar Shahin
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai
| | - Abbas Soleimani-Delfan
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huiyan Ding
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Heye Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lichang Sun
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ran Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
11
|
Johnson CN, Sheriff EK, Duerkop BA, Chatterjee A. Let Me Upgrade You: Impact of Mobile Genetic Elements on Enterococcal Adaptation and Evolution. J Bacteriol 2021; 203:e0017721. [PMID: 34370561 PMCID: PMC8508098 DOI: 10.1128/jb.00177-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococci are Gram-positive bacteria that have evolved to thrive as both commensals and pathogens, largely due to their accumulation of mobile genetic elements via horizontal gene transfer (HGT). Common agents of HGT include plasmids, transposable elements, and temperate bacteriophages. These vehicles of HGT have facilitated the evolution of the enterococci, specifically Enterococcus faecalis and Enterococcus faecium, into multidrug-resistant hospital-acquired pathogens. On the other hand, commensal strains of Enterococcus harbor CRISPR-Cas systems that prevent the acquisition of foreign DNA, restricting the accumulation of mobile genetic elements. In this review, we discuss enterococcal mobile genetic elements by highlighting their contributions to bacterial fitness, examine the impact of CRISPR-Cas on their acquisition, and identify key areas of research that can improve our understanding of enterococcal evolution and ecology.
Collapse
Affiliation(s)
- Cydney N. Johnson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Emma K. Sheriff
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
12
|
Hwang J, Thompson A, Jaros J, Blackcloud P, Hsiao J, Shi VY. Updated understanding of Staphylococcus aureus in atopic dermatitis: From virulence factors to commensals and clonal complexes. Exp Dermatol 2021; 30:1532-1545. [PMID: 34293242 DOI: 10.1111/exd.14435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/18/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022]
Abstract
Atopic dermatitis (AD) is a common inflammatory dermatosis that has multiple contributing factors including genetic, immunologic and environmental. Staphylococcus aureus (SA) has long been associated with exacerbation of AD. SA produces many virulence factors that interact with the human skin and immune system. These superantigens and toxins have been shown to contribute to adhesion, inflammation and skin barrier destruction. Recent advances in genome sequencing techniques have led to a broadened understanding of the multiple ways SA interacts with the cutaneous environment in AD hosts. For example, temporal shifts in the microbiome, specifically in clonal complexes of SA, have been identified during AD flares and remission. Herein, we review mechanisms of interaction between the cutaneous microbiome and SA and highlight known differences in SA clonal complexes that contribute to AD pathogenesis. Detailed knowledge of the genetic strains of SA and cutaneous dysbiosis is becoming increasingly relevant in paving the way for microbiome-modulating and precision therapies for AD.
Collapse
Affiliation(s)
- Jonwei Hwang
- University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Alyssa Thompson
- College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Joanna Jaros
- John H. Stroger Hospital Cook County Health Dermatology, Chicago, Illinois, USA
| | - Paul Blackcloud
- Division of Dermatology, University of California, Los Angeles, Los Angeles, California, USA
| | - Jennifer Hsiao
- Division of Dermatology, University of California, Los Angeles, Los Angeles, California, USA
| | - Vivian Y Shi
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
13
|
Ene A, Miller-Ensminger T, Mores CR, Giannattasio-Ferraz S, Wolfe AJ, Abouelfetouh A, Putonti C. Examination of Staphylococcus aureus Prophages Circulating in Egypt. Viruses 2021; 13:337. [PMID: 33671574 PMCID: PMC7926752 DOI: 10.3390/v13020337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus infections are of growing concern given the increased incidence of antibiotic resistant strains. Egypt, like several other countries, has seen alarming increases in methicillin-resistant S. aureus (MRSA) infections. This species can rapidly acquire genes associated with resistance, as well as virulence factors, through mobile genetic elements, including phages. Recently, we sequenced 56 S. aureus genomes from Alexandria Main University Hospital in Alexandria, Egypt, complementing 17 S. aureus genomes publicly available from other sites in Egypt. In the current study, we found that the majority (73.6%) of these strains contain intact prophages, including Biseptimaviruses, Phietaviruses, and Triaviruses. Further investigation of these prophages revealed evidence of horizontal exchange of the integrase for two of the prophages. These Egyptian S. aureus prophages are predicted to encode numerous virulence factors, including genes associated with immune evasion and toxins, including the Panton-Valentine leukocidin (PVL)-associated genes lukF-PV/lukS-PV. Thus, prophages are likely to be a major contributor to the virulence of S. aureus strains in circulation in Egypt.
Collapse
Affiliation(s)
- Adriana Ene
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA; (A.E.); (T.M.-E.)
| | - Taylor Miller-Ensminger
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA; (A.E.); (T.M.-E.)
| | - Carine R. Mores
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (C.R.M.); (A.J.W.)
| | - Silvia Giannattasio-Ferraz
- Departmento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (C.R.M.); (A.J.W.)
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria 25435, Egypt;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alalamein International University, Alalamein 51718, Egypt
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA; (A.E.); (T.M.-E.)
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (C.R.M.); (A.J.W.)
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| |
Collapse
|