1
|
Dashevsky D, Harris RJ, Zdenek CN, Benard-Valle M, Alagón A, Portes-Junior JA, Tanaka-Azevedo AM, Grego KF, Sant'Anna SS, Frank N, Fry BG. Red-on-Yellow Queen: Bio-Layer Interferometry Reveals Functional Diversity Within Micrurus Venoms and Toxin Resistance in Prey Species. J Mol Evol 2024; 92:317-328. [PMID: 38814340 PMCID: PMC11168994 DOI: 10.1007/s00239-024-10176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Snakes in the family Elapidae largely produce venoms rich in three-finger toxins (3FTx) that bind to the α 1 subunit of nicotinic acetylcholine receptors (nAChRs), impeding ion channel activity. These neurotoxins immobilize the prey by disrupting muscle contraction. Coral snakes of the genus Micrurus are specialist predators who produce many 3FTx, making them an interesting system for examining the coevolution of these toxins and their targets in prey animals. We used a bio-layer interferometry technique to measure the binding interaction between 15 Micrurus venoms and 12 taxon-specific mimotopes designed to resemble the orthosteric binding region of the muscular nAChR subunit. We found that Micrurus venoms vary greatly in their potency on this assay and that this variation follows phylogenetic patterns rather than previously reported patterns of venom composition. The long-tailed Micrurus tend to have greater binding to nAChR orthosteric sites than their short-tailed relatives and we conclude this is the likely ancestral state. The repeated loss of this activity may be due to the evolution of 3FTx that bind to other regions of the nAChR. We also observed variations in the potency of the venoms depending on the taxon of the target mimotope. Rather than a pattern of prey-specificity, we found that mimotopes modeled after snake nAChRs are less susceptible to Micrurus venoms and that this resistance is partly due to a characteristic tryptophan → serine mutation within the orthosteric site in all snake mimotopes. This resistance may be part of a Red Queen arms race between coral snakes and their prey.
Collapse
Affiliation(s)
- Daniel Dashevsky
- Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia.
| | - Richard J Harris
- Venom Evolution Lab, School of the Environment, The University of Queensland, Saint Lucia, QLD, 4072, Australia
- Australian Institute of Marine Science, Cape Cleveland, QLD, 4810, Australia
| | - Christina N Zdenek
- Celine Frere Group, School of the Environment, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Melisa Benard-Valle
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Region Hovedstaden, Denmark
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - José A Portes-Junior
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo, São Paulo, 05503-900, Brazil
| | - Anita M Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, 05503-900, Brazil
| | - Kathleen F Grego
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, 05503-900, Brazil
| | - Sávio S Sant'Anna
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, 05503-900, Brazil
| | - Nathaniel Frank
- MToxins Venom Lab, 717 Oregon Street, Oshkosh, WI, 54902, USA
| | - Bryan G Fry
- Venom Evolution Lab, School of the Environment, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| |
Collapse
|
2
|
Torres Costa KC, Santana Vieira Santos V, Rezende Vaz E, Natalie Cirilo Gimenes S, Ian Veloso Correia L, Brito de Souza J, de Almeida Araújo Santos F, de Melo Rodrigues V, Ricardo Goulart L, Alonso Goulart V. A novel peptide able to reduce PLA 2 activity and modulate inflammatory cytokine production. Toxicon 2023; 231:107207. [PMID: 37364619 DOI: 10.1016/j.toxicon.2023.107207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Phospholipases A2 (PLA2s) are associated with inflammatory response, performing a complex process involving, specially, cytokines. The excess of pro-inflammatory cytokines induces a chronic inflammatory response and can cause several disorders in the body. Therefore, the inhibition or regulation of cytokines' signaling pathways is a target for new treatment development strategies. Thus, this study aimed to select PLA2 inhibitor mimetic peptides through phage display technology with anti-inflammatory activity. Specific mimetic peptides were selected using BpPLA2-TXI, a PLA2 isolated from Bothrops pauloensis, as a target, and γCdcPL, a PLA2 inhibitor isolated from Crotalus durissus collilineatus, which was used as a competitor during the elution step. We selected the peptide C2PD, which seems to play a pivotal role in the modulation of IL-6, IL-1β, and IL-10 cytokines in inflammatory cells. The C2PD showed a significant reduction in PLA2 activity. Furthermore, the synthetic peptide was tested in PBMC and showed a significant down-modulation of IL-6 and IL-1β release, whereas IL-10 responses were up-regulated. Our findings suggest that this novel peptide may be a potential therapeutic candidate for the treatment of inflammatory diseases, mainly due to its anti-inflammatory properties and absence of cytotoxicity.
Collapse
Affiliation(s)
- Kellen Cristina Torres Costa
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil.
| | - Vanessa Santana Vieira Santos
- Laboratory of Environmental Health, Department of Environmental Health, Institute of Biotechnology, Federal University of Uberlandia, Santa Monica Campus, Avenida João Naves de Ávila, 2121, 38.408-100, Uberlandia, Minas Gerais, Brazil
| | - Emília Rezende Vaz
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| | | | - Lucas Ian Veloso Correia
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| | - Jessica Brito de Souza
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| | - Fabiana de Almeida Araújo Santos
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil; Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| | - Vivian Alonso Goulart
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| |
Collapse
|
3
|
van Thiel J, Khan MA, Wouters RM, Harris RJ, Casewell NR, Fry BG, Kini RM, Mackessy SP, Vonk FJ, Wüster W, Richardson MK. Convergent evolution of toxin resistance in animals. Biol Rev Camb Philos Soc 2022; 97:1823-1843. [PMID: 35580905 PMCID: PMC9543476 DOI: 10.1111/brv.12865] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
Convergence is the phenomenon whereby similar phenotypes evolve independently in different lineages. One example is resistance to toxins in animals. Toxins have evolved many times throughout the tree of life. They disrupt molecular and physiological pathways in target species, thereby incapacitating prey or deterring a predator. In response, molecular resistance has evolved in many species exposed to toxins to counteract their harmful effects. Here, we review current knowledge on the convergence of toxin resistance using examples from a wide range of toxin families. We explore the evolutionary processes and molecular adaptations driving toxin resistance. However, resistance adaptations may carry a fitness cost if they disrupt the normal physiology of the resistant animal. Therefore, there is a trade‐off between maintaining a functional molecular target and reducing toxin susceptibility. There are relatively few solutions that satisfy this trade‐off. As a result, we see a small set of molecular adaptations appearing repeatedly in diverse animal lineages, a phenomenon that is consistent with models of deterministic evolution. Convergence may also explain what has been called ‘autoresistance’. This is often thought to have evolved for self‐protection, but we argue instead that it may be a consequence of poisonous animals feeding on toxic prey. Toxin resistance provides a unique and compelling model system for studying the interplay between trophic interactions, selection pressures and the molecular mechanisms underlying evolutionary novelties.
Collapse
Affiliation(s)
- Jory van Thiel
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Muzaffar A Khan
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Roel M Wouters
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Richard J Harris
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072, Australia
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072, Australia
| | - R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, 23298, U.S.A
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639-0017, U.S.A
| | - Freek J Vonk
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands.,Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Wolfgang Wüster
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, LL57 2UW, U.K
| | - Michael K Richardson
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
4
|
A comparative study of endogenous phospholipase A 2 inhibitors in the serum of Brazilian pit vipers. Toxicon 2022; 213:87-91. [PMID: 35487313 DOI: 10.1016/j.toxicon.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/20/2022]
Abstract
This work compared the presence of phospholipase A2 inhibitors (PLIs) in the serum of 19 snake species maintained at Instituto Butantan to better understand the mechanisms of venom resistance in snakes and improve the treatment of snakebite. PLI was isolated from blood of 19 snake species by one-step chromatography and identified in all samples, besides its identity was confirmed through the interaction with both phospholipase A2 and anti-γPLI. These findings highlight the diversity of snake serum PLIs and emphasize the importance of structure-function studies.
Collapse
|
5
|
Rodrigues CFB, Zdenek CN, Serino-Silva C, de Morais-Zani K, Grego KF, Bénard-Valle M, Neri-Castro E, Alagón A, Tanaka-Azevedo AM, Fry BG. BoaγPLI from Boa constrictor Blood is a Broad-Spectrum Inhibitor of Venom PLA 2 Pathophysiological Actions. J Chem Ecol 2021; 47:907-914. [PMID: 34165686 DOI: 10.1007/s10886-021-01289-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022]
Abstract
The use of venom in predation exerts a corresponding selection pressure for the evolution of venom resistance. One of the mechanisms related to venom resistance in animals (predators or prey of snakes) is the presence of molecules in the blood that can bind venom toxins, and inhibit their pharmacological effects. One such toxin type are venom phospholipase A2s (PLA2s), which have diverse effects including anticoagulant, myotoxic, and neurotoxic activities. BoaγPLI isolated from the blood of Boa constrictor has been previously shown to inhibit venom PLA2s that induced myotoxic and edematogenic activities. Recently, in addition to its previously described and very potent neurotoxic effect, the venoms of American coral snakes (Micrurus species) have been shown to have anticoagulant activity via PLA2 toxins. As coral snakes eat other snakes as a major part of their diet, neonate Boas could be susceptible to predation by this sympatric species. Thus, this work aimed to ascertain if BoaγPLI provided a protective effect against the anticoagulant toxicity of venom from the model species Micrurus laticollaris in addition to its ability shown previously against other toxin types. Using a STA R Max coagulation analyser robot to measure the effect upon clotting time, and TEG5000 thromboelastographers to measure the effect upon clot strength, we evaluated the ability of BoaγPLI to inhibit M. laticollaris venom. Our results indicate that BoaγPLI is efficient at inhibiting the M. laticollaris anticoagulant effect, reducing the time of coagulation (restoring them closer to non-venom control values) and increasing the clot strength (restoring them closer to non-venom control values). These findings demonstrate that endogenous PLA2 inhibitors in the blood of non-venomous snakes are multi-functional and provide broad resistance against a myriad of venom PLA2-driven toxic effects including coagulotoxicity, myotoxicity, and neurotoxicity. This novel form of resistance could be evidence of selective pressures caused by predation from venomous snakes and stresses the need for field-based research aimed to expand our understanding of the evolutionary dynamics of such chemical arms race.
Collapse
Affiliation(s)
- Caroline Fabri Bittencourt Rodrigues
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades Em Biotecnologia, USP, IPT e Instituto Butantan, São Paulo, Brazil
| | - Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Caroline Serino-Silva
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades Em Biotecnologia, USP, IPT e Instituto Butantan, São Paulo, Brazil
| | - Karen de Morais-Zani
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades Em Biotecnologia, USP, IPT e Instituto Butantan, São Paulo, Brazil
| | | | - Melisa Bénard-Valle
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Edgar Neri-Castro
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Anita Mitico Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades Em Biotecnologia, USP, IPT e Instituto Butantan, São Paulo, Brazil
| | - Bryan Grieg Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
6
|
Biochemical and functional characterization of a new recombinant phospholipase A 2 inhibitor from Crotalus durissus collilineatus snake serum. Int J Biol Macromol 2020; 164:1545-1553. [PMID: 32735921 DOI: 10.1016/j.ijbiomac.2020.07.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 11/20/2022]
Abstract
Phospholipase A2 plays an important role in many diseases. Thus, the production of bioactive molecules, which can modulate PLA2 activity, became an important target for the pharmaceutical industry. Previously, we demonstrated the inhibitory and anti-angiogenic effect of γCdcPLI, the natural PLA2inhibitor from Crotalus durissus collilineatus. The aim of the present study was to recombinantly express the γCdcPLI inhibitor and analyze its biochemical and functional characteristics. Based on the amino acid sequence from the natural protein, we designed a synthetic gene for production of a non-tagged recombinant recγCdcPLI using the pHis-Parallel2 vector. To enable disulfide bond formation, protein expression was performed using E. coli Rosetta-gamiB. The protein was purified by anion and affinity chromatography with a yield of 5 mg/L. RecγCdcPLI showed similar secondary structure in CD and FTIR, revealing predominately β-strands. Analogous to the natural protein, recγCdcPLI was able to form oligomers of ~5.5 nm. The inhibitor was efficiently binding to PLA2 from honeybee (Kd = 1.48 μM) and was able to inhibit the PLA2 activity. Furthermore, it decreased the vessel formation in HUVEC cells, suggesting an anti-angiogenic potential. Heterologous production of recγCdcPLI is highly efficient and thus enables enhanced drug design for treatment of diseases triggered by PLA2 activity.
Collapse
|