1
|
Otenaike TA, Farodoye OM, de Silva MM, Loreto JS, Adedara AO, Dos Santos MM, de Prestes AS, Barbosa NV, da Rocha JBT, Lobo LE, Wagner R, Abolaji AO, Loreto ELS. Nicotine and Vape: Drugs of the Same Profile Flock Together. J Biochem Mol Toxicol 2024; 38:e70075. [PMID: 39601203 DOI: 10.1002/jbt.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Smoking, a major behavioral health burden, causes preventable and premature deaths globally. Nicotine, the addictive component present in tobacco products and Electronic cigarettes (E-cigarettes, vape), can bind to nicotinic acetylcholine receptors in the brain to trigger a dopamine release that reinforces smoking. Despite the widespread usage of nicotine, its mechanisms of toxicity, particularly in e-cigarettes, are poorly understood. Using Drosophila melanogaster as a model organism, this study aims to investigate the mechanism of the toxicity of nicotine and vape. Behavioral parameters, oxidative stress indicators, mRNA expression levels of Dopamine 1- receptor 1 (Dop1R1), Acetyl-coenzyme A synthetase (AcCoAs), and apoptotic proteins were assessed in the flies after a 5-day exposure to varying concentrations of nicotine (0.15, 0.25, and 0.35 mg/mL diet) and vape (0.06, 0.08, and 0.12 mg/mL diet). Furthermore, Gas Chromatography-Mass Spectrometry (GC/MS) and Gas Chromatography-Flame Ionization Detection (GC/FID) analyzes were conducted to gain more insight on the composition of the vape used in study. Findings indicate that both nicotine and vape exposure significantly reduced lifespan, impaired locomotor activity, and disrupted sleep patterns. Notably, nicotine exposure stimulated Dop1R1 transcription and altered Acetyl-CoA gene expression, impacting the viability and behavior of the flies. Elevated levels of reactive oxygen biomarkers were observed, contributing to cellular damage through oxidative stress and apoptotic mechanisms mediated by the Reaper and DIAP1 proteins. Additionally, the composition analysis of vape liquid revealed the presence of propylene glycol, nicotine, methyl esters, and an unidentified compound. This study highlights the complex interplay between nicotine, gene expression, and physiological responses in Drosophila.
Collapse
Affiliation(s)
- Titilayomi A Otenaike
- Doctoral Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), CEP, Porto Alegre, Brazil
- Drosophila Research and Training Centre, Ibadan, Nigeria
| | - Oluwabukola M Farodoye
- Doctoral Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), CEP, Porto Alegre, Brazil
- Drosophila Research and Training Centre, Ibadan, Nigeria
| | - Monica M de Silva
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Julia S Loreto
- Center for Natural and Exact Sciences, Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Adeola O Adedara
- Drosophila Research and Training Centre, Ibadan, Nigeria
- Center for Natural and Exact Sciences, Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Matheus M Dos Santos
- Center for Natural and Exact Sciences, Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Alessandro S de Prestes
- Center for Natural and Exact Sciences, Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Nilda V Barbosa
- Center for Natural and Exact Sciences, Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - João B T da Rocha
- Center for Natural and Exact Sciences, Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Luiz E Lobo
- Department of Technology and Food Science, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Roger Wagner
- Department of Technology and Food Science, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Amos O Abolaji
- Drosophila Research and Training Centre, Ibadan, Nigeria
- Drosophila Laboratory, Department of Biochemistry, College of Medicine, Molecular Drug Metabolism and Toxicology Unit, Ibadan, Nigeria
| | - Elgion L S Loreto
- Doctoral Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), CEP, Porto Alegre, Brazil
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| |
Collapse
|
2
|
Hu J, Bi R, Luo Y, Wu K, Jin S, Liu Z, Jia Y, Mao CX. The gut microbiome promotes locomotion of Drosophila larvae via octopamine signaling. INSECT SCIENCE 2024. [PMID: 38643372 DOI: 10.1111/1744-7917.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/10/2024] [Accepted: 03/24/2024] [Indexed: 04/22/2024]
Abstract
The gut microbiome is a key partner of animals, influencing various aspects of their physiology and behaviors. Among the diverse behaviors regulated by the gut microbiome, locomotion is vital for survival and reproduction, although the underlying mechanisms remain unclear. Here, we reveal that the gut microbiome modulates the locomotor behavior of Drosophila larvae via a specific neuronal type in the brain. The crawling speed of germ-free (GF) larvae was significantly reduced compared to the conventionally reared larvae, while feeding and excretion behaviors were unaffected. Recolonization with Acetobacter and Lactobacillus can fully and partially rescue the locomotor defects in GF larvae, respectively, probably due to the highest abundance of Acetobacter as a symbiotic bacterium in the larval gut, followed by Lactobacillus. Moreover, the gut microbiome promoted larval locomotion, not by nutrition, but rather by enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA). Overexpression of Tdc2 rescued locomotion ability in GF larvae. These findings together demonstrate that the gut microbiome specifically modulates larval locomotor behavior through the OA signaling pathway, revealing a new mechanism underlying larval locomotion regulated by the gut microbiome.
Collapse
Affiliation(s)
- Juncheng Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ran Bi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yuxuan Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Kaihong Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Shan Jin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhihua Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yicong Jia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Chuan-Xi Mao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
3
|
Thane M, Paisios E, Stöter T, Krüger AR, Gläß S, Dahse AK, Scholz N, Gerber B, Lehmann DJ, Schleyer M. High-resolution analysis of individual Drosophila melanogaster larvae uncovers individual variability in locomotion and its neurogenetic modulation. Open Biol 2023; 13:220308. [PMID: 37072034 PMCID: PMC10113034 DOI: 10.1098/rsob.220308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/05/2023] [Indexed: 04/20/2023] Open
Abstract
Neuronally orchestrated muscular movement and locomotion are defining faculties of multicellular animals. Due to its simple brain and genetic accessibility, the larva of the fruit fly Drosophila melanogaster allows one to study these processes at tractable levels of complexity. However, although the faculty of locomotion clearly pertains to the individual, most studies of locomotion in larvae use measurements aggregated across animals, or animals tested one by one, an extravagance for larger-scale analyses. This prevents grasping the inter- and intra-individual variability in locomotion and its neurogenetic determinants. Here, we present the IMBA (individual maggot behaviour analyser) for analysing the behaviour of individual larvae within groups, reliably resolving individual identity across collisions. We use the IMBA to systematically describe the inter- and intra-individual variability in locomotion of wild-type animals, and how the variability is reduced by associative learning. We then report a novel locomotion phenotype of an adhesion GPCR mutant. We further investigated the modulation of locomotion across repeated activations of dopamine neurons in individual animals, and the transient backward locomotion induced by brief optogenetic activation of the brain-descending 'mooncrawler' neurons. In summary, the IMBA is an easy-to-use toolbox allowing an unprecedentedly rich view of the behaviour and its variability of individual larvae, with utility in multiple biomedical research contexts.
Collapse
Affiliation(s)
- Michael Thane
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Simulation and Graphics, Otto von Guerike University, Magdeburg, Germany
| | - Emmanouil Paisios
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Torsten Stöter
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anna-Rosa Krüger
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Sebastian Gläß
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anne-Kristin Dahse
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Nicole Scholz
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Bertram Gerber
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Dirk J. Lehmann
- Department of Simulation and Graphics, Otto von Guerike University, Magdeburg, Germany
- Department for Information Engineering, Faculty of Computer Science, Ostfalia University of Applied Science, Brunswick-Wolfenbuettel, Germany
| | - Michael Schleyer
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
4
|
Cyto-Genotoxic and Behavioral Effects of Flubendiamide in Allium cepa Root Cells, Drosophila melanogaster and Molecular Docking Studies. Int J Mol Sci 2023; 24:ijms24021565. [PMID: 36675079 PMCID: PMC9861014 DOI: 10.3390/ijms24021565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Flubendiamide (FLB) is an insecticide that is commonly employed to control pests on a variety of vegetables and fruits, with low toxicity for non-target organisms. However, due to its widespread use, the environmental risks and food safety have become major concerns. In this study, the toxicity potential of FLB was studied in the model organisms, Allium cepa and Drosophila melanogaster. The cyto-genotoxic effects of FLB on the root growth, mitotic index (MI), chromosomal aberrations (CAs) and deoxyribonucleic acid (DNA) damage in A. cepa root meristematic cells were investigated using the root growth inhibition Allium test and Comet assays. FLB caused CAs in the form of disturbed ana-telophase, chromosome laggards, stickiness, anaphase-bridge and polyploidy depending on the concentration and the exposure time. The toxicity and genotoxicity of FLB at various doses (0.001, 0.01, 0.1 and 1 mM) on D. melanogaster were investigated from the point of view of larval weight and movement, pupal formation success, pupal position, emergence success and DNA damage, respectively. FLB exposure led to a significant reduction of the locomotor activity at the highest concentration. While DNA damage increased significantly in the FLB-treated onions depending on the concentration and time, DNA damage in the FLB-treated D. melanogaster significantly increased only at the highest dose compared to that which occurred in the control group. Moreover, to provide a mechanistic insight into the genotoxic and locomotion-disrupting effects of FLB, molecular docking simulations of this pesticide were performed against the DNA and diamondback moth (DBM) ryanodine receptor (RyR) Repeat34 domain. The docking studies revealed that FLB binds strongly to a DNA region that is rich in cytosine-guanine-adenine bases (C-G-A) in the minor groove, and it displayed a remarkable binding affinity against the DBM RyR Repeat34 domain.
Collapse
|
5
|
Li Y, Gao H, Yu R, Zhang Y, Feng F, Tang J, Li B. Identification and characterization of G protein-coupled receptors in Spodoptera frugiperda (Insecta: Lepidoptera). Gen Comp Endocrinol 2022; 317:113976. [PMID: 35016911 DOI: 10.1016/j.ygcen.2022.113976] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
Spodoptera frugiperda (Insecta: Lepidoptera) is a destructive invasive pest feeding on various plants and causing serious damage to several economically-important crops. G protein-coupled receptors (GPCRs) are cellular receptors that coordinate diverse signaling processes, associated with many physiological processes and disease states. However, less information about GPCRs had been reported in S. frugiperda, limiting the recognition of signaling system and in-depth studies of this pest. Here, a total of 167 GPCRs were identified in S. frugiperda. Compared with other insects, the GPCRs of S. frugiperda were significantly expanded. A large of tandem duplication and segmental duplication events were observed, which may be the key factor to increase the size of GPCR family. In detail, these expansion events mainly concentrate on biogenic amine receptors, neuropeptide and protein hormone receptors, which may be involved in feeding, reproduction, life span, and tolerance of S. frugiperda. Additionally, 17 Mth/Mthl members were identified in S. frugiperda, which may be similar to the evolutionary pattern of 16 Mth/Mthl members in Drosophila. Moreover, the expression patterns across different developmental stages of all GPCR genes were also analyzed. Among these, most of the GPCR genes are poorly expressed in S. frugiperda and some highly expressed GPCR genes help S. frugiperda adapt to the environment better, such as Rh6 and AkhR. In this study, all GPCRs in S. frugiperda were identified for the first time, which provided a basis for further revealing the role of these receptors in the physiological and behavioral regulation of this pest.
Collapse
Affiliation(s)
- Yanxiao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Runnan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yonglei Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Fan Feng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|