1
|
Santana-Melo I, Caixeta DC, Aguiar EMG, Cardoso-Sousa L, Pacheco ALD, Santos YMOD, da Silva JT, Santana AEG, Carneiro MG, Castro OWD, Sabino-Silva R. Photonic platform coupled with machine learning algorithms to detect pyrolysis products of crack cocaine in saliva: A proof-of-concept animal study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 329:125635. [PMID: 39729705 DOI: 10.1016/j.saa.2024.125635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/08/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
The non-invasive detection of crack/cocaine and other bioactive compounds from its pyrolysis in saliva can provide an alternative for drug analysis in forensic toxicology. Therefore, a highly sensitive, fast, reagent-free, and sustainable approach with a non-invasive specimen is relevant in public health. In this animal model study, we evaluated the effects of exposure to smoke crack cocaine on salivary flow, salivary gland weight, and salivary composition using Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. The exposure to crack cocaine was performed in an acrylic box apparatus with a burned activation of crack/cocaine 400 mg for 10 min for 14 consecutive days. Crack/cocaine exposure increased the salivary secretion without changes in parotid and submandibular weights. Hierarchical Clustering Analysis (HCA) was applied to depict subgrouping patterns in infrared spectra, and Principal components analysis (PCA) explained 83.2 % of the cumulative variance using 3 PCs. ATR-FTIR platforms were coupled to AdaBoost, Artificial Neural Networks, Naïve Bayes, Random Forest, and Support Vector Machine (SVM) algorithms tool to identify changes in the infrared salivary spectra of rats exposed to crack cocaine. The best classification of crack cocaine exposure using the salivary spectra was performed by Naïve Bayes, presenting a sensitivity of 100 %, specificity of 80 %, and accuracy of 90 % between crack cocaine and control rats. The SHAP features of salivary infrared spectra mostly indicate the vibrational modes at 1331 cm-1 and 2806 cm-1, representing CH2 wagging commonly linked in lipids and C-H stretch often attributed to the CH2 or CH3 groups in lipid molecules, respectively, as the main responsible vibrational modes for crack cocaine exposure discrimination. In summary, the present pre-clinical findings indicate the potential of the ATR-FTIR platform coupled with machine learning to effectively detect changes in salivary infrared spectra promoted by exposure to crack cocaine.
Collapse
Affiliation(s)
- Igor Santana-Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, AL, Brazil
| | - Douglas Carvalho Caixeta
- Innovation Center in Salivary Diagnostics and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil
| | - Emília Maria Gomes Aguiar
- Innovation Center in Salivary Diagnostics and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil
| | - Leia Cardoso-Sousa
- Innovation Center in Salivary Diagnostics and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil
| | | | | | - Jefté Teixeira da Silva
- Innovation Center in Salivary Diagnostics and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil
| | | | | | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, AL, Brazil.
| | - Robinson Sabino-Silva
- Innovation Center in Salivary Diagnostics and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil.
| |
Collapse
|
2
|
Abstract
This paper is the forty-third consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2020 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
3
|
Bojarska J, Mieczkowski A, Ziora ZM, Skwarczynski M, Toth I, Shalash AO, Parang K, El-Mowafi SA, Mohammed EHM, Elnagdy S, AlKhazindar M, Wolf WM. Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold. Biomolecules 2021; 11:1515. [PMID: 34680148 PMCID: PMC8533947 DOI: 10.3390/biom11101515] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclic dipeptides, also know as diketopiperazines (DKP), the simplest cyclic forms of peptides widespread in nature, are unsurpassed in their structural and bio-functional diversity. DKPs, especially those containing proline, due to their unique features such as, inter alia, extra-rigid conformation, high resistance to enzyme degradation, increased cell permeability, and expandable ability to bind a diverse of targets with better affinity, have emerged in the last years as biologically pre-validated platforms for the drug discovery. Recent advances have revealed their enormous potential in the development of next-generation theranostics, smart delivery systems, and biomaterials. Here, we present an updated review on the biological and structural profile of these appealing biomolecules, with a particular emphasis on those with anticancer properties, since cancers are the main cause of death all over the world. Additionally, we provide a consideration on supramolecular structuring and synthons, based on the proline-based DKP privileged scaffold, for inspiration in the design of compound libraries in search of ideal ligands, innovative self-assembled nanomaterials, and bio-functional architectures.
Collapse
Affiliation(s)
- Joanna Bojarska
- Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland;
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.M.Z.); (I.T.)
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
| | - Istvan Toth
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.M.Z.); (I.T.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ahmed O. Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Shaima A. El-Mowafi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Eman H. M. Mohammed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Sherif Elnagdy
- Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.E.); (M.A.)
| | - Maha AlKhazindar
- Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.E.); (M.A.)
| | - Wojciech M. Wolf
- Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland;
| |
Collapse
|