2
|
Nibouche S, Costet L, Medina RF, Holt JR, Sadeyen J, Zoogones AS, Brown P, Blackman RL. Morphometric and molecular discrimination of the sugarcane aphid, Melanaphis sacchari, (Zehntner, 1897) and the sorghum aphid Melanaphis sorghi (Theobald, 1904). PLoS One 2021; 16:e0241881. [PMID: 33764987 PMCID: PMC7993840 DOI: 10.1371/journal.pone.0241881] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/08/2021] [Indexed: 11/18/2022] Open
Abstract
Melanaphis sacchari (Zehntner, 1897) and Melanaphis sorghi (Theobald, 1904) are major worldwide crop pests causing direct feeding damage on sorghum and transmitting viruses to sugarcane. It is common in the scientific literature to consider these two species as synonyms, referred to as the 'sugarcane aphid', although no formal study has validated this synonymy. In this study, based on the comparison of samples collected from their whole distribution area, we use both morphometric and molecular data to better characterize the discrimination between M. sacchari and M. sorghi. An unsupervised multivariate analysis of morphometric data clearly confirmed the separation of the two species. The best discriminating characters separating these species were length of the antenna processus terminalis relative to length of hind tibia, siphunculus or cauda. However, those criteria sometimes do not allow an unambiguous identification. Bayesian clustering based on microsatellite data delimited two clusters, which corresponded to the morphological species separation. The DNA sequencing of three nuclear and three mitochondrial regions revealed slight divergence between species. In particular, the COI barcode region proved to be uninformative for species separation because one haplotype is shared by both species. In contrast, one SNP located on the nuclear EF1-α gene was diagnostic for species separation. Based on morphological and molecular evidence, the invasive genotype damaging to sorghum in the US, Mexico and the Caribbean since 2013 is found to be M. sorghi.
Collapse
Affiliation(s)
| | | | - Raul F. Medina
- Texas A&M University, College Station, Texas, United States of America
| | - Jocelyn R. Holt
- Texas A&M University, College Station, Texas, United States of America
| | - Joëlle Sadeyen
- UMR PVBMT, Université de La Réunion, Saint Pierre, La Réunion, France
| | - Anne-Sophie Zoogones
- CIRAD, UMR PVBMT, Saint Pierre, La Réunion, France
- UMR PVBMT, Université de La Réunion, Saint Pierre, La Réunion, France
| | - Paul Brown
- The Natural History Museum, London, United Kingdom
| | | |
Collapse
|
3
|
Holkar SK, Balasubramaniam P, Kumar A, Kadirvel N, Shingote PR, Chhabra ML, Kumar S, Kumar P, Viswanathan R, Jain RK, Pathak AD. Present Status and Future Management Strategies for Sugarcane Yellow Leaf Virus: A Major Constraint to the Global Sugarcane Production. THE PLANT PATHOLOGY JOURNAL 2020; 36:536-557. [PMID: 33312090 PMCID: PMC7721539 DOI: 10.5423/ppj.rw.09.2020.0183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/23/2020] [Accepted: 11/07/2020] [Indexed: 02/08/2023]
Abstract
Sugarcane yellow leaf virus (SCYLV) is a distinct member of the Polerovirus genus of the Luteoviridae family. SCYLV is the major limitation to sugarcane production worldwide and presently occurring in most of the sugarcane growing countries. SCYLV having high genetic diversity within the species and presently ten genotypes are known to occur based on the complete genome sequence information. SCYLV is present in almost all the states of India where sugarcane is grown. Virion comprises of 180 coat protein units and are 24-29 nm in diameter. The genome of SCYLV is a monopartite and comprised of single-stranded (ss) positive-sense (+) linear RNA of about 6 kb in size. Virus genome consists of six open reading frames (ORFs) that are expressed by sub-genomic RNAs. The SCYLV is phloem-limited and transmitted by sugarcane aphid Melanaphis sacchari in a circulative and non-propagative manner. The other aphid species namely, Ceratovacuna lanigera, Rhopalosiphum rufiabdominalis, and R. maidis also been reported to transmit the virus. The virus is not transmitted mechanically, therefore, its transmission by M. sacchari has been studied in different countries. SCYLV has a limited natural host range and mainly infect sugarcane (Sachharum hybrid), grain sorghum (Sorghum bicolor), and Columbus grass (Sorghum almum). Recent insights in the protein-protein interactions of Polerovirus through protein interaction reporter (PIR) technology enable us to understand viral encoded proteins during virus replication, assembly, plant defence mechanism, short and long-distance travel of the virus. This review presents the recent understandings on virus biology, diagnosis, genetic diversity, virus-vector and host-virus interactions and conventional and next generation management approaches.
Collapse
Affiliation(s)
- Somnath Kadappa Holkar
- ICAR-Indian Institute of Sugarcane Research, Biological Control Centre, Pravaranagar, Maharashtra 43 72, India
| | | | - Atul Kumar
- ICAR-Indian Institute of Sugarcane Research, Biological Control Centre, Pravaranagar, Maharashtra 43 72, India.,Amity Institute of Biotechnology, Amity University, Lucknow Campus, Lucknow 226 010, Uttar Pradesh, India
| | - Nithya Kadirvel
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore 61 007, Tamil Nadu, India
| | | | - Manohar Lal Chhabra
- ICAR-Sugarcane Breeding Institute, Regional Centre, Karnal, Haryana 13 001, India
| | - Shubham Kumar
- ICAR-Sugarcane Breeding Institute, Regional Centre, Karnal, Haryana 13 001, India
| | - Praveen Kumar
- ICAR-Sugarcane Breeding Institute, Regional Centre, Karnal, Haryana 13 001, India
| | - Rasappa Viswanathan
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore 61 007, Tamil Nadu, India
| | - Rakesh Kumar Jain
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110 012, India
| | - Ashwini Dutt Pathak
- ICAR-Indian Institute of Sugarcane Research, Lucknow 226 002, Uttar Pradesh, India
| |
Collapse
|
4
|
Bolus S, Malapi-Wight M, Grinstead SC, Fuentes-Bueno I, Hendrickson L, Hammond RW, Mollov D. Identification and characterization of Miscanthus yellow fleck virus, a new polerovirus infecting Miscanthus sinensis. PLoS One 2020; 15:e0239199. [PMID: 32941541 PMCID: PMC7498013 DOI: 10.1371/journal.pone.0239199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022] Open
Abstract
Miscanthus sinensis is a grass used for sugarcane breeding and bioenergy production. Using high throughput sequencing technologies, we identified a new viral genome in infected M. sinensis leaf tissue displaying yellow fleck symptoms. This virus is most related to members of the genus Polerovirus in the family Luteoviridae. The canonical ORFs were computationally identified, the P3 coat protein was expressed, and virus-like particles were purified and found to conform to icosahedral shapes, characteristic of the family Luteoviridae. We propose the name Miscanthus yellow fleck virus for this new virus.
Collapse
Affiliation(s)
- Stephen Bolus
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, Maryland, United States of America
| | - Martha Malapi-Wight
- USDA-APHIS-PPQ, Plant Germplasm Quarantine Program, Beltsville, Maryland, United States of America
- USDA-APHIS-BRS, Biotechnology Risk Analysis Programs, Riverdale, Maryland, United States of America
| | - Samuel C. Grinstead
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, Maryland, United States of America
| | - Irazema Fuentes-Bueno
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, Maryland, United States of America
| | - Leticia Hendrickson
- USDA-APHIS-PPQ, Plant Germplasm Quarantine Program, Beltsville, Maryland, United States of America
| | - Rosemarie W. Hammond
- USDA-ARS, Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| | - Dimitre Mollov
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, Maryland, United States of America
- * E-mail:
| |
Collapse
|