1
|
Asiedu DA, Jónasdóttir S, Søndergaard J, Thomas H, Hempel N, Koski M. Mercury bioaccumulation and assimilation in marine plankton in meltwater influenced fjords and shelf waters along the east coast of Greenland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125473. [PMID: 39643225 DOI: 10.1016/j.envpol.2024.125473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The rapid melting of the Arctic cryosphere due to climate change will result in significant freshwater input into Arctic marine ecosystems. This might also cause the release of legacy mercury (Hg) stored in the cryosphere, increasing Hg concentration and its subsequent effects on the marine biota. However, there is scarce knowledge on the concentration of Hg in the lower trophic level organisms at the base of the Arctic pelagic food web. This is particularly important since these organisms modulate the transfer of Hg to higher trophic levels, including fish and marine mammals. We quantified the total Hg (THg) concentration in two plankton size classes (>200 and 50-200 μm) in coastal waters along the east Greenland coast and investigated the potential assimilation efficiency of both inorganic Hg (IHg) and methyl Hg (MeHg) in mesozooplankton and their faecal pellets in experimental incubations. The concentration of THg in plankton ranged from 12 to 109 ng (g dw)-1 without clear trends between geographic locations or between fjords and coastal areas. Also, the concentrations did not vary between the different plankton size fractions. MeHg concentrations were lower in the mesozooplankton faecal pellets than IHg, which may be due to the higher assimilation of MeHg than IHg in mesozooplankton tissue. Our results confirm that Arctic zooplankton assimilates MeHg more efficiently than IHg and may contribute significantly to the partitioning and cycling of different Hg types in Arctic marine ecosystems.
Collapse
Affiliation(s)
- Delove Abraham Asiedu
- National Institute of Aquatic Resources, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Sigrun Jónasdóttir
- National Institute of Aquatic Resources, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Jens Søndergaard
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej, 399, DK-4000, Roskilde, Denmark
| | - Helmuth Thomas
- Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, Max-Planck Str. 1, 21502, Geesthacht, Germany; Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Oldenburg, 26129, Germany
| | - Niklas Hempel
- Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, Max-Planck Str. 1, 21502, Geesthacht, Germany; Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Oldenburg, 26129, Germany
| | - Marja Koski
- National Institute of Aquatic Resources, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Lin S, Zhao F, Chen Y, Wang M. Multigenerational impact of global change: Increased mercury toxicity in a marine copepod. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136505. [PMID: 39549578 DOI: 10.1016/j.jhazmat.2024.136505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
A multi-generational experiment (F1-F4) was conducted for a marine copepod Tigriopus japonicus to investigate its physiological and molecular responses to mercury (Hg) pollution and/or its combination with ocean acidification (OA) plus ocean warming (OW). The projected future scenario, i.e., OA plus OW (AW) significantly increased methylmercury accumulation in copepods by 1.14 times, despite insignificant change for total Hg bioaccumulation. Transcriptomic analysis indicated that copepods initiated several detoxification defense processes, including reactive oxygen species metabolic process, glutathione metabolism, and protein refolding, in response to increased Hg toxicity under combined exposure of AW and Hg; meanwhile, inhibited energy metabolism was observed in this case, linking to reduced number of nauplii/clutch but accelerated development in copepods probably due to an energetic trade-off. Increased Hg toxicity due to AW could also be ascribed to the impairment in immune defense (e.g., lysosome and vitamin metabolism) and reproduction-related processes (e.g., growth factor activity). Collectively, this study reveals the multi-generational response mechanism of copepods to Hg pollution under global change, emphasizing an exacerbated adverse effect of Hg, and it provides a scientific basis for an accurate understanding of the potential impact of Hg pollution on marine ecosystems.
Collapse
Affiliation(s)
- Shiru Lin
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Fankang Zhao
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yao Chen
- Xiamen Marine Center of Ministry of Natural Resources, Xiamen 361102, China.
| | - Minghua Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Amill F, Couture P, Derome N. Mercury and Arctic Char Gill Microbiota Correlation in Canadian Arctic Communities. Microorganisms 2024; 12:2449. [PMID: 39770652 PMCID: PMC11678572 DOI: 10.3390/microorganisms12122449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Arctic char is a top predator in Arctic waters and is threatened by mercury pollution in the context of changing climate. Gill microbiota is directly exposed to environmental xenobiotics and play a central role in immunity and fitness. Surprisingly, there is a lack of literature studying the effect of mercury on gill microbiota. To fill this knowledge gap, our primary goal was to measure to what extent gill exposure to mercury may alter gill microbiota activity in Arctic char. Specifically, we calculated the correlation between the taxonomic distribution of gill-associated bacterial symbiont activity and total mercury concentration in livers and muscles in wild populations of Arctic char in the Canadian Arctic. Our results showed that total mercury concentrations in tissues were higher in Ekaluktutiak (Nunavut) than in the other sites in Nunavik. Proteobacteria was the main phylum correlated to mercury concentration in both tissues, followed by Bacteroidetes and Cyanobacteria. In the most contaminated sites, Aeromonas and Pseudomonas (Proteobacteria) were predominant, while mercury concentration negatively correlated with Photobacterium (Proteobacteria) or Cerasicoccus (Verrucomicrobia). In summary, we found that mercury contamination correlates with active gill microbiota composition, with potential implications of strains in modulating mercury toxicity, making them interesting for future biomarker studies.
Collapse
Affiliation(s)
- Flora Amill
- Institute of Integrative and Systems Biology, Laval University, Quebec, QC G1V 0A6, Canada;
| | - Patrice Couture
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, 490 Rue de la Couronne, Quebec, QC G1K 9A9, Canada;
| | - Nicolas Derome
- Institute of Integrative and Systems Biology, Laval University, Quebec, QC G1V 0A6, Canada;
| |
Collapse
|
4
|
Mazur-Marzec H, Andersson AF, Błaszczyk A, Dąbek P, Górecka E, Grabski M, Jankowska K, Jurczak-Kurek A, Kaczorowska AK, Kaczorowski T, Karlson B, Kataržytė M, Kobos J, Kotlarska E, Krawczyk B, Łuczkiewicz A, Piwosz K, Rybak B, Rychert K, Sjöqvist C, Surosz W, Szymczycha B, Toruńska-Sitarz A, Węgrzyn G, Witkowski A, Węgrzyn A. Biodiversity of microorganisms in the Baltic Sea: the power of novel methods in the identification of marine microbes. FEMS Microbiol Rev 2024; 48:fuae024. [PMID: 39366767 PMCID: PMC11500664 DOI: 10.1093/femsre/fuae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/06/2024] Open
Abstract
Until recently, the data on the diversity of the entire microbial community from the Baltic Sea were relatively rare and very scarce. However, modern molecular methods have provided new insights into this field with interesting results. They can be summarized as follows. (i) Although low salinity causes a reduction in the biodiversity of multicellular species relative to the populations of the North-East Atlantic, no such reduction occurs in bacterial diversity. (ii) Among cyanobacteria, the picocyanobacterial group dominates when considering gene abundance, while filamentous cyanobacteria dominate in means of biomass. (iii) The diversity of diatoms and dinoflagellates is significantly larger than described a few decades ago; however, molecular studies on these groups are still scarce. (iv) Knowledge gaps in other protistan communities are evident. (v) Salinity is the main limiting parameter of pelagic fungal community composition, while the benthic fungal diversity is shaped by water depth, salinity, and sediment C and N availability. (vi) Bacteriophages are the predominant group of viruses, while among viruses infecting eukaryotic hosts, Phycodnaviridae are the most abundant; the Baltic Sea virome is contaminated with viruses originating from urban and/or industrial habitats. These features make the Baltic Sea microbiome specific and unique among other marine environments.
Collapse
Affiliation(s)
- Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Anders F Andersson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Tomtebodavägen 23A, SE-171 65 Solna, Stockholm, Sweden
| | - Agata Błaszczyk
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Ewa Górecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Michał Grabski
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| | - Katarzyna Jankowska
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Agata Jurczak-Kurek
- Department of Evolutionary Genetics and Biosystematics, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Anna K Kaczorowska
- Collection of Plasmids and Microorganisms, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Bengt Karlson
- Swedish Meteorological and Hydrological Institute
, Research and Development, Oceanography, Göteborgseskaderns plats 3, Västra Frölunda SE-426 71, Sweden
| | - Marija Kataržytė
- Marine Research Institute, Klaipėda University, Universiteto ave. 17, LT-92294 Klaipeda, Lithuania
| | - Justyna Kobos
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Ewa Kotlarska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Beata Krawczyk
- Department of Biotechnology and Microbiology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Aneta Łuczkiewicz
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Kasia Piwosz
- National Marine Fisheries Research Institute, Kołłątaja 1, PL-81-332 Gdynia, Poland
| | - Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Dębowa 23A, PL-80-204 Gdansk, Poland
| | - Krzysztof Rychert
- Pomeranian University in Słupsk, Arciszewskiego 22a, PL-76-200 Słupsk, Poland
| | - Conny Sjöqvist
- Environmental and Marine Biology, Åbo Akademi University, Henriksgatan 2, FI-20500 Åbo, Finland
| | - Waldemar Surosz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Beata Szymczycha
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Alicja Węgrzyn
- University Center for Applied and Interdisciplinary Research, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
5
|
O'Hara TM, Ylitalo GM, Crawford SG, Taras BD, Fadely BS, Rehberg MJ, Rea LD. Spatial and cumulative organochlorine and mercury exposure assessments in Steller Sea lions of Alaska: Emphasizing pups. MARINE POLLUTION BULLETIN 2024; 205:116592. [PMID: 38917493 DOI: 10.1016/j.marpolbul.2024.116592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Steller sea lions (SSL) are sentinels for monitoring environmental contaminants in remote areas of the Aleutian Islands, Alaska. Therefore, concentrations of several organochlorines (OCs) were measured in blood from 123 SSL pups sampled from 3 regions; the western Aleutian Islands (WAI), central Aleutian Islands (CAI), and the central Gulf of Alaska. Blood, blubber, and milk from 12 adult female SSL from WAI, CAI and southeast Alaska also were analyzed. Findings included the following. SSL pups had higher concentrations of some OCs and mercury (Hg) on rookeries in the WAI than those more easterly. Pups had significantly higher blood concentrations of many OC classes than adult females sampled within the same region; some pups had PCB concentrations exceeding thresholds of concern (∑PCBs >8600 ng/g lw). ∑PCB concentration in pup whole blood was positively correlated with the trophic marker, δ15N within the regions sampled, along with two PCB congeners (PCB138 and PCB153). This suggests that the dams of pups with higher ∑PCBs, PCB138, and PCB153 concentrations were feeding on more predatory prey. Adult female blubber ∑DDT and hexachlorocyclohexane concentrations were also positively correlated with δ15N values. Several pups (mostly from WAI) had blood Hg concentrations and/or blood PCB concentrations (surrogate for overall OC exposures) of concern. The finding that WAI SSL pups have been exposed to multiple contaminants calls for future investigation of their cumulative exposure to a mixture of contaminants especially their transplacental and then transmammary exposure routes.
Collapse
Affiliation(s)
- T M O'Hara
- Department of Veterinary Medicine, College of Natural Sciences and Mathematics, University of Alaska Fairbanks, Fairbanks, AK 99775, USA; Veterinary Integrative Biosciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Institute of Northern Engineering, Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - G M Ylitalo
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. East, Seattle, WA 98112, USA
| | - S G Crawford
- Institute of Northern Engineering, Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - B D Taras
- Alaska Department of Fish and Game, Division of Wildlife Conservation, Fairbanks, AK 99701, USA
| | - B S Fadely
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA 98115, USA
| | - M J Rehberg
- Alaska Department of Fish and Game, Division of Wildlife Conservation, Anchorage, AK 99518, USA
| | - L D Rea
- Institute of Northern Engineering, Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA; Alaska Department of Fish and Game, Division of Wildlife Conservation, Fairbanks, AK 99701, USA.
| |
Collapse
|
6
|
Rodríguez-Viso P, Domene A, Sánchez A, Vélez D, Monedero V, Devesa V, Zúñiga M. Challenges and strategies for preventing intestinal damage associated to mercury dietary exposure. Toxicology 2023; 494:153580. [PMID: 37328091 DOI: 10.1016/j.tox.2023.153580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
Food represents the major risk factor for exposure to mercury in most human populations. Therefore, passage through the gastrointestinal tract plays a fundamental role in its entry into the organism. Despite the intense research carried out on the toxicity of Hg, the effects at the intestinal level have received increased attention only recently. In this review we first provide a critical appraisal of the recent advances on the toxic effects of Hg at the intestinal epithelium. Next, dietary strategies aimed to diminish Hg bioavailability or modulate the epithelial and microbiota responses will be revised. Food components and additives, including probiotics, will be considered. Finally, limitations of current approaches to tackle this problem and future lines of research will be discussed.
Collapse
Affiliation(s)
| | - Adrián Domene
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Alicia Sánchez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain.
| |
Collapse
|
7
|
Jonsson S, Liem-Nguyen V, Andersson A, Skyllberg U, Nilsson MB, Lundberg E, Björn E. Geochemical and Dietary Drivers of Mercury Bioaccumulation in Estuarine Benthic Invertebrates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10141-10148. [PMID: 35770966 PMCID: PMC9301910 DOI: 10.1021/acs.est.2c03265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sediments represent the main reservoir of mercury (Hg) in aquatic environments and may act as a source of Hg to aquatic food webs. Yet, accumulation routes of Hg from the sediment to benthic organisms are poorly constrained. We studied the bioaccumulation of inorganic and methylmercury (HgII and MeHg, respectively) from different geochemical pools of Hg into four groups of benthic invertebrates (amphipods, polychaetes, chironomids, and bivalves). The study was conducted using mesocosm experiments entailing the use of multiple isotopically enriched Hg tracers and simulation of estuarine systems with brackish water and sediment. We applied different loading regimes of nutrients and terrestrial organic matter and showed that the vertical localization and the chemical speciation of HgII and MeHg in the sediment, in combination with the diet composition of the invertebrates, consistently controlled the bioaccumulation of HgII and MeHg into the benthic organisms. Our results suggest a direct link between the concentration of MeHg in the pelagic planktonic food web and the concentration of MeHg in benthic amphipods and, to some extent, in bivalves. In contrast, the quantity of MeHg in benthic chironomids and polychaetes seems to be driven by MeHg accumulation via the benthic food web. Accounting for these geochemical and dietary drivers of Hg bioaccumulation in benthic invertebrates will be important to understand and predict Hg transfer between the benthic and the pelagic food web, under current and future environmental scenarios.
Collapse
Affiliation(s)
- Sofi Jonsson
- Department
of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
- Umeå
Marine Sciences Centre, Umeå University, SE-910 20 Hörnefors, Sweden
| | - Van Liem-Nguyen
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Agneta Andersson
- Umeå
Marine Sciences Centre, Umeå University, SE-910 20 Hörnefors, Sweden
- Department
of Ecology and Environmental Science, Umeå
University, SE-901 87 Umeå, Sweden
| | - Ulf Skyllberg
- Department
of Forest Ecology and Management, Swedish
University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Mats B. Nilsson
- Department
of Forest Ecology and Management, Swedish
University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Erik Lundberg
- Umeå
Marine Sciences Centre, Umeå University, SE-910 20 Hörnefors, Sweden
| | - Erik Björn
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
8
|
Bass D, Rueckert S, Stern R, Cleary AC, Taylor JD, Ward GM, Huys R. Parasites, pathogens, and other symbionts of copepods. Trends Parasitol 2021; 37:875-889. [PMID: 34158247 DOI: 10.1016/j.pt.2021.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
There is a large diversity of eukaryotic symbionts of copepods, dominated by epizootic protists such as ciliates, and metazoan parasites. Eukaryotic endoparasites, copepod-associated bacteria, and viruses are less well known, partly due to technical limitations. However, new molecular techniques, combined with a range of other approaches, provide a complementary toolkit for understanding the complete symbiome of copepods and how the symbiome relates to their ecological roles, relationships with other biota, and responses to environmental change. In this review we provide the most complete overview of the copepod symbiome to date, including microeukaryotes, metazoan parasites, bacteria, and viruses, and provide extensive literature databases to inform future studies.
Collapse
Affiliation(s)
- David Bass
- International Centre of Excellence in Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Sonja Rueckert
- School of Applied Sciences, Edinburgh Napier University, Sighthill Court, Edinburgh EH11 4BN, UK
| | - Rowena Stern
- Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Alison C Cleary
- Department of Natural Sciences, University of Agder, Universitetsveien 25, Kristiansand, 4630, Norway
| | - Joe D Taylor
- School of Chemistry and Bioscience, University of Bradford, Richmond Rd, Bradford BD7 1DP, UK
| | - Georgia M Ward
- International Centre of Excellence in Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Rony Huys
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
9
|
Canova L, Sturini M, Profumo A, Maraschi F. Evidence of Low-Habitat Contamination Using Feathers of Three Heron Species as a Biomonitor of Inorganic Elemental Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7776. [PMID: 33114248 PMCID: PMC7660610 DOI: 10.3390/ijerph17217776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
The concentration of 12 elements (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) has been investigated in the feathers of three species of Ardeidae, namely the Grey Heron Ardea cinerea, the Little Egret Egretta garzetta, and the Cattle Egret Bubulcus ibis, all breeding at a colony located in the southern Padana Plain (NW Italy). This study is a first step for an evaluation of possible direct effects of these elements on chicks' survival and growth rate. Fe, Zn, Cu, and Mn were in the range 7-69 mg Kg-1, while lower levels of Pb, Ni, As, and Se (0.27-1.45 mg Kg-1) were measured. Co, Cd, and Cr were close to the method detection limits (MDLs) in all the species. The measured concentrations of the most abundant trace elements, such as Zn and Cu, seem to reflect the geochemical pattern of the background (running water and soil), while Hg concentration is lower and it appears to be biomagnified, particularly in Grey Heron feathers. Its concentration is higher in adults than in chicks, and it differs among the three species, as it is closely related to the fish-based dietary pattern. The measured trace elements' concentrations are below the threshold levels in all the heron species, and consequently, harmful and acute effects on the local population are unlikely; the conservation status of herons populations in northern Italy is probably more affected by other factors, such as climate changes, altered aquatic environment, and, consequently, food quality.
Collapse
Affiliation(s)
- Luca Canova
- Department of Chemistry, University of Pavia, I-27100 Pavia, Italy; (M.S.); (A.P.); (F.M.)
| | | | | | | |
Collapse
|
10
|
Capo E, Bravo AG, Soerensen AL, Bertilsson S, Pinhassi J, Feng C, Andersson AF, Buck M, Björn E. Deltaproteobacteria and Spirochaetes-Like Bacteria Are Abundant Putative Mercury Methylators in Oxygen-Deficient Water and Marine Particles in the Baltic Sea. Front Microbiol 2020; 11:574080. [PMID: 33072037 PMCID: PMC7536318 DOI: 10.3389/fmicb.2020.574080] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
Methylmercury (MeHg), a neurotoxic compound biomagnifying in aquatic food webs, can be a threat to human health via fish consumption. However, the composition and distribution of the microbial communities mediating the methylation of mercury (Hg) to MeHg in marine systems remain largely unknown. In order to fill this knowledge gap, we used the Baltic Sea Reference Metagenome (BARM) dataset to study the abundance and distribution of the genes involved in Hg methylation (the hgcAB gene cluster). We determined the relative abundance of the hgcAB genes and their taxonomic identity in 81 brackish metagenomes that cover spatial, seasonal and redox variability in the Baltic Sea water column. The hgcAB genes were predominantly detected in anoxic water, but some hgcAB genes were also detected in hypoxic and normoxic waters. Phylogenetic analysis identified putative Hg methylators within Deltaproteobacteria, in oxygen-deficient water layers, but also Spirochaetes-like and Kiritimatiellaeota-like bacteria. Higher relative quantities of hgcAB genes were found in metagenomes from marine particles compared to free-living communities in anoxic water, suggesting that such particles are hotspot habitats for Hg methylators in oxygen-depleted seawater. Altogether, our work unveils the diversity of the microorganisms with the potential to mediate MeHg production in the Baltic Sea and pinpoint the important ecological niches for these microorganisms within the marine water column.
Collapse
Affiliation(s)
- Eric Capo
- Department of Chemistry, Umeå University, Umeå, Sweden.,Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Andrea G Bravo
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Anne L Soerensen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Stockholm, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Caiyan Feng
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Anders F Andersson
- Department of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|