1
|
Nguyen HTT, Lindahl JF, Bett B, Nguyen-Viet H, Lâm S, Nguyen-Tien T, Unger F, Dang-Xuan S, Bui TX, Le HT, Lundkvist Å, Ling J, Lee HS. Understanding zoonotic pathogens and risk factors from wildlife in Southeast Asia: a systematic literature review. Vet Q 2025; 45:1-17. [PMID: 40059837 PMCID: PMC11894755 DOI: 10.1080/01652176.2025.2475990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
The COVID-19 pandemic has demonstrated the significance of the human-animal interface in the emergence of zoonotic diseases, with wildlife serving as an important source of infection. A better understanding of the specific pathogens and mechanisms involved is vital to prepare against future outbreaks, especially in Southeast Asia, a hotspot for zoonotic diseases. This paper reviews the published literature on wildlife zoonoses in this region from 2012 to 2022. The results show a diverse range of potential zoonotic pathogens and the widespread occurrence of zoonotic diseases from wildlife. Drivers of zoonotic pathogen spillover include (i) environmental factors (e.g. animal habitat disruption, environmental conditions, exposure to contaminated water/food/soil), (ii) animal factors (e.g. movement patterns, age-related susceptibility), (iii) human factors (e.g. lack of awareness, poor hygiene practices, age, gender and income) and (iv) human-animal-environmental interface factors (e.g. close contact between humans and animals, exposure through visiting animals and presence of vectors). The diverse drivers of zoonoses in Southeast Asia put its communities at risk for infection. To mitigate these risks, global health efforts should consider adopting a One Health approach to foster collaboration across human, animal, and wildlife health sectors. This could involve educating communities on safe animal interactions and improving disease surveillance.
Collapse
Affiliation(s)
- Ha Thi Thanh Nguyen
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
| | - Johanna F Lindahl
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
- Swedish Veterinary Agency, Uppsala, Sweden
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Steven Lâm
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Fred Unger
- International Livestock Research Institute, Hanoi, Vietnam
| | - Sinh Dang-Xuan
- International Livestock Research Institute, Hanoi, Vietnam
| | - Thanh Xuan Bui
- Ho Chi Minh City Department of Health, Ho Chi Minh Center for Diseases Control, Ho Chi Minh, Vietnam
| | - Hien Thanh Le
- Ho Chi Minh City University of Agriculture and Forestry, Ho Chi Minh, Vietnam
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jiaxin Ling
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hu Suk Lee
- International Livestock Research Institute, Hanoi, Vietnam
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Li R, Tendu A, Kane Y, Omondi V, Ying J, Mao L, Xu S, Xu R, Chen X, Chen Y, Descorps-Declère S, Bienes KM, Fassatoui M, Hughes AC, Berthet N, Wong G. Differential prevalence and risk factors for infection with coronaviruses in bats collected from Yunnan Province, China. One Health 2024; 19:100923. [PMID: 39605930 PMCID: PMC11600012 DOI: 10.1016/j.onehlt.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Coronaviruses (CoVs) pose a threat to human health globally, as highlighted by severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and the COVID-19 pandemic. Bats from the Greater Mekong Subregion (GMS) are an important natural reservoir for CoVs. Here we report the differential prevalence of CoVs in bats within Yunnan Province across biological and ecological variables. We also show the coexistence of CoVs in individual bats and identify an additional putative host for SARS-related CoV, with higher dispersal capacity than other known hosts. Notably, 11 SARS-related coronaviruses (SARSr-CoVs) were discovered in horseshoe bats (family Rhinolophidae) and a Chinese water myotis bat (Myotis laniger) by pan-CoV detection and Illumina sequencing. Our findings facilitate an understanding of the fundamental features of the distribution and circulation of CoVs in nature as well as zoonotic spillover risk in the One health framework.
Collapse
Affiliation(s)
- Ruiya Li
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alexander Tendu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yakhouba Kane
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Victor Omondi
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Jiaxu Ying
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Lingjing Mao
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Shiman Xu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Xu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Chen
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Yanhua Chen
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Kathrina Mae Bienes
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Meriem Fassatoui
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Alice C. Hughes
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Nicolas Berthet
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
- Institut Pasteur, Unité Environnement et Risque Infectieux, Cellule d'Intervention Biologique d'Urgence, 75015 Paris, France
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
3
|
Nguyen TT, Mai TN, Dang-Xuan S, Nguyen-Viet H, Unger F, Lee HS. Emerging zoonotic diseases in Southeast Asia in the period 2011-2022: a systematic literature review. Vet Q 2024; 44:1-15. [PMID: 38229485 PMCID: PMC10795789 DOI: 10.1080/01652176.2023.2300965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024] Open
Abstract
As COVID-19 has shown, pandemics and outbreaks of emerging infections such as Zika, Nipah, monkeypox and antimicrobial-resistant pathogens, especially emerging zoonotic diseases, continue to occur and may even be increasing in Southeast Asia. In addition, these infections often result from environmental changes and human behaviour. Overall, public health surveillance to identify gaps in the literature and early warning signs are essential in this region. A systematic review investigated the prevalence of emerging zoonotic diseases over 11 years from 2011 to 2022 in Southeast Asia to understand the status of emerging zoonotic diseases, as well as to provide necessary actions for disease control and prevention in the region. During the 2011-2022 period, studies on pigs, poultry, ruminants, companion animals and wildlife in Southeast Asia were reviewed thoroughly to assess the quality of reporting items for inclusion in the systematic review. The review was performed on 26 studies of pigs, 6 studies of poultry, 21 studies of ruminants, 28 studies of companion animals and 25 studies of wildlife in Southeast Asia, which provide a snapshot of the prevalence of the emerging zoonotic disease across the country. The findings from the review showed that emerging zoonotic diseases were prevalent across the region and identified a few zoonotic diseases associated with poultry, mainly stemming from Cambodia and Vietnam, as high priority in Southeast Asia.Clinical relevance: Appropriate prevention and control measures should be taken to mitigate the emerging zoonotic diseases in Southeast Asia.
Collapse
Affiliation(s)
- Thanh Trung Nguyen
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thi Ngan Mai
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Sinh Dang-Xuan
- International Livestock Research Institute, Regional Office for East and Southeast Asia, Hanoi, Vietnam
| | - Hung Nguyen-Viet
- International Livestock Research Institute, Regional Office for East and Southeast Asia, Hanoi, Vietnam
| | - Fred Unger
- International Livestock Research Institute, Regional Office for East and Southeast Asia, Hanoi, Vietnam
| | - Hu Suk Lee
- International Livestock Research Institute, Regional Office for East and Southeast Asia, Hanoi, Vietnam
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
4
|
Zehr JD, Kosakovsky Pond SL, Shank SD, McQueary H, Grenier JK, Whittaker GR, Stanhope MJ, Goodman LB. Positive selection, genetic recombination, and intra-host evolution in novel equine coronavirus genomes and other members of the Embecovirus subgenus. Microbiol Spectr 2024; 12:e0086724. [PMID: 39373506 PMCID: PMC11542594 DOI: 10.1128/spectrum.00867-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/24/2024] [Indexed: 10/08/2024] Open
Abstract
There are several examples of coronaviruses in the Betacoronavirus subgenus Embecovirus that have jumped from an animal to the human host. Studying how evolutionary factors shape coronaviruses in non-human hosts may provide insight into the coronavirus host-switching potential. Equids, such as horses and donkeys, are susceptible to equine coronaviruses (ECoVs). With increased testing prevalence, several ECoV genome sequences have become available for molecular evolutionary analyses, especially those from the United States of America (USA). To date, no analyses have been performed to characterize evolution within coding regions of the ECoV genome. Here, we obtain and describe four new ECoV genome sequences from infected equines from across the USA presenting clinical symptoms of ECoV, and infer ECoV-specific and Embecovirus-wide patterns of molecular evolution. Within two of the four data sets analyzed, we find evidence of intra-host evolution within the nucleocapsid (N) gene, suggestive of quasispecies development. We also identify 12 putative genetic recombination events within the ECoV genome, 11 of which fall in ORF1ab. Finally, we infer and compare sites subject to positive selection on the ancestral branch of each major Embecovirus member clade. Specifically, for the two currently identified human coronavirus (HCoV) embecoviruses that have spilled from animals to humans (HCoV-OC43 and HCoV-HKU1), we find that there are 42 and 2 such sites, respectively, perhaps reflective of the more complex ancestral evolutionary history of HCoV-OC43, which involves several different animal hosts.IMPORTANCEThe Betacoronavirus subgenus Embecovirus contains coronaviruses that not only pose a health threat to animals and humans, but also have jumped from animal to human host. Equids, such as horses and donkeys are susceptible to equine coronavirus (ECoV) infections. No studies have systematically examined evolutionary patterns within ECoV genomes. Our study addresses this gap and provides insight into intra-host ECoV evolution from infected horses. Further, we identify and report natural selection pattern differences between two embecoviruses that have jumped from animals to humans [human coronavirus OC43 and HKU1 (HCoV-OC43 and HCoV-HKU1, respectively)], and hypothesize that the differences observed may be due to the different animal host(s) that each virus circulated in prior to its jump into humans. Finally, we contribute four novel, high-quality ECoV genomes to the scientific community.
Collapse
Affiliation(s)
- Jordan D. Zehr
- Department of Biology,
Institute for Genomics and Evolutionary Medicine, Temple
University, Philadelphia,
Pennsylvania, USA
- James A. Baker
Institute for Animal Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Sergei L. Kosakovsky Pond
- Department of Biology,
Institute for Genomics and Evolutionary Medicine, Temple
University, Philadelphia,
Pennsylvania, USA
| | - Stephen D. Shank
- Department of Biology,
Institute for Genomics and Evolutionary Medicine, Temple
University, Philadelphia,
Pennsylvania, USA
| | - Holly McQueary
- James A. Baker
Institute for Animal Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Jennifer K. Grenier
- Cornell Institute of
Biotechnology, Transcriptional Regulation and Expression
Facility, Ithaca,
New York, USA
| | - Gary R. Whittaker
- Department of Public
and Ecosystem Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Michael J. Stanhope
- Department of Public
and Ecosystem Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Laura B. Goodman
- James A. Baker
Institute for Animal Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
- Department of Public
and Ecosystem Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| |
Collapse
|
5
|
Galindo-González J. Avoiding novel, unwanted interactions among species to decrease risk of zoonoses. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14232. [PMID: 38111356 DOI: 10.1111/cobi.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 12/20/2023]
Abstract
Circumstances that precipitate interactions among species that have never interacted during their evolutionary histories create ideal conditions for the generation of zoonoses. Zoonotic diseases have caused some of the most devastating epidemics in human history. Contact among species that come from different ecosystems or regions creates the risk of zoonoses. In certain situations, humans are generating and promoting conditions that contribute to the creation of infectious diseases and zoonoses. These conditions lead to interactions between wildlife species that have hitherto not interacted under normal circumstances. I call for recognition of the zoonotic potential that novel and unwanted interactions have; identification of these new interactions that are occurring among wild animals, domestic animals, and humans; and efforts to stop these kinds of interactions because they can give rise to zoonotic outbreaks. Live animal markets, the exotic pet trade, illegal wildlife trade, human use and consumption of wild animals, invasive non-native species, releasing of exotic pets, and human encroachment in natural areas are among the activities that cause the most interactions among wild species, domestic species, and humans. These activities should not occur and must be controlled efficiently to prevent future epidemic zoonoses. Society must develop a keen ability to identify these unnatural interactions and prevent them. Controlling these interactions and efficiently addressing their causal factors will benefit human health and, in some cases, lead to positive environmental, ethical, and socioeconomic outcomes. Until these actions are taken, humanity will face future zoonoses and zoonotic pandemic.
Collapse
Affiliation(s)
- Jorge Galindo-González
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, México
| |
Collapse
|
6
|
Fauziah I, Nugroho HA, Yanthi ND, Tiffarent R, Saputra S. Potential zoonotic spillover at the human-animal interface: A mini-review. Vet World 2024; 17:289-302. [PMID: 38595670 PMCID: PMC11000462 DOI: 10.14202/vetworld.2024.289-302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/09/2024] [Indexed: 04/11/2024] Open
Abstract
Wildlife markets and wet wildlife markets, a type of human-animal interface, are commonly trading centers for wild-caught and captive-exotic animals as well as their products. These markets provide an ideal environment for spillovers of zoonotic and emerging infectious diseases (EIDs). These conditions may raise serious concerns, particularly in relation to wildlife species that frequently interact with humans and domestic animals. EIDs pose a significant risk to humans, ecosystems, and public health, as demonstrated by the current COVID-19 pandemic, and other previous outbreaks, including the highly pathogenic avian influenza H5N1. Even though it seems appears impossible to eliminate EIDs, we may still be able to minimalize the risks and take several measures to prevent new EIDs originated from animals. The aim of this study was to review several types of human-animal interfaces with a high risk of zoonotic spillover, infectious agents, and animal hosts or reservoirs. Identifying those factors will support the development of interventions and effective disease control in human-animal interface settings.
Collapse
Affiliation(s)
- Ima Fauziah
- Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Raya Jakarta Bogor Km 46 Cibinong, Bogor, West Java, Indonesia
| | - Herjuno Ari Nugroho
- Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Raya Jakarta Bogor Km 46 Cibinong, Bogor, West Java, Indonesia
| | - Nova Dilla Yanthi
- Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Raya Jakarta Bogor Km 46 Cibinong, Bogor, West Java, Indonesia
| | - Rida Tiffarent
- Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Raya Jakarta Bogor Km 46 Cibinong, Bogor, West Java, Indonesia
| | - Sugiyono Saputra
- Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Raya Jakarta Bogor Km 46 Cibinong, Bogor, West Java, Indonesia
| |
Collapse
|
7
|
Sarmadi S, Rahbar MR, Najafi H, Chukwudozie OS, Morowvat MH. In Silico Design and Evaluation of a Novel Therapeutic Agent Against the Spike Protein as a Novel Treatment Strategy for COVID-19 Treatment. Recent Pat Biotechnol 2024; 18:162-176. [PMID: 37231757 DOI: 10.2174/1872208317666230523105759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is a viral respiratory disease that is associated with severe damage to other human organs. It causes by a novel coronavirus, and it is spreading all over the world. To date, there is some approved vaccine or therapeutic agent which could be effective against this disease. But their effectiveness against mutated strains is not studied completely. The spike glycoprotein on the surface of the coronaviruses gives the virus the ability to bind to host cell receptors and enter cells. Inhibition of attachment of these spikes can lead to virus neutralization by inhibiting viral entrance. AIMS In this study, we tried to use the virus entrance strategy against itself by utilizing virus receptor (ACE-2) in order to design an engineered protein consisting of a human Fc antibody fragment and a part of ACE-2, which reacts with virus RBD, and we also evaluated this interaction by computational methods and in silico methods. Subsequently, we have designed a new protein structure to bind with this site and inhibit the virus from attaching to its cell receptor, mechanically or chemically. METHODS Various in silico software, bioinformatics, and patent databases were used to retrieve the requested gene and protein sequences. The physicochemical properties and possibility of allergenicity were also examined. Three-dimensional structure prediction and molecular docking were also performed to develop the most suitable therapeutic protein. RESULTS The designed protein consisted of a total of 256 amino acids with a molecular weight of 28984.62 and 5.92 as a theoretical isoelectric point. Instability and aliphatic index and grand average of hydropathicity are 49.99, 69.57 and -0.594, respectively. CONCLUSIONS In silico studies can provide a good opportunity to study viral proteins and new drugs or compounds since they do not need direct exposure to infectious agents or equipped laboratories. The suggested therapeutic agent should be further characterized in vitro and in vivo.
Collapse
Affiliation(s)
- Soroush Sarmadi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran
- Department of Pathobiology, Faculty of Veterinary Medicine, Shiraz University, P.O. Box 71441-11731, Shiraz, Iran
| | - Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran
| | - Hamideh Najafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, P.O. Box 14199-63111, Tehran, Iran
| | - Onyeka S Chukwudozie
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran
| |
Collapse
|
8
|
Valitutto MT, Aung O, Naing Tun KY, Vodzak ME, Zimmerman D, Yu JH, Win YT, Maw MT, Thein WZ, Win HH, Dhanota J, Ontiveros V, Smith B, Tremeau-Bravard A, Goldstein T, Johnson CK, Murray S, Mazet J. Correction: Detection of novel coronaviruses in bats in Myanmar. PLoS One 2023; 18:e0295490. [PMID: 38048309 PMCID: PMC10695361 DOI: 10.1371/journal.pone.0295490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0230802.].
Collapse
|
9
|
Jones BD, Kaufman EJ, Peel AJ. Viral Co-Infection in Bats: A Systematic Review. Viruses 2023; 15:1860. [PMID: 37766267 PMCID: PMC10535902 DOI: 10.3390/v15091860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Co-infection is an underappreciated phenomenon in contemporary disease ecology despite its ubiquity and importance in nature. Viruses, and other co-infecting agents, can interact in ways that shape host and agent communities, influence infection dynamics, and drive evolutionary selective pressures. Bats are host to many viruses of zoonotic potential and have drawn increasing attention in their role as wildlife reservoirs for human spillover. However, the role of co-infection in driving viral transmission dynamics within bats is unknown. Here, we systematically review peer-reviewed literature reporting viral co-infections in bats. We show that viral co-infection is common in bats but is often only reported as an incidental finding. Biases identified in our study database related to virus and host species were pre-existing in virus studies of bats generally. Studies largely speculated on the role co-infection plays in viral recombination and few investigated potential drivers or impacts of co-infection. Our results demonstrate that current knowledge of co-infection in bats is an ad hoc by-product of viral discovery efforts, and that future targeted co-infection studies will improve our understanding of the role it plays. Adding to the broader context of co-infection studies in other wildlife species, we anticipate our review will inform future co-infection study design and reporting in bats. Consideration of detection strategy, including potential viral targets, and appropriate analysis methodology will provide more robust results and facilitate further investigation of the role of viral co-infection in bat reservoirs.
Collapse
Affiliation(s)
- Brent D. Jones
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | | | - Alison J. Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
10
|
Corduneanu A, Zając Z, Kulisz J, Wozniak A, Foucault-Simonin A, Moutailler S, Wu-Chuang A, Peter Á, Sándor AD, Cabezas-Cruz A. Detection of bacterial and protozoan pathogens in individual bats and their ectoparasites using high-throughput microfluidic real-time PCR. Microbiol Spectr 2023; 11:e0153123. [PMID: 37606379 PMCID: PMC10581248 DOI: 10.1128/spectrum.01531-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/05/2023] [Indexed: 08/23/2023] Open
Abstract
Among the most studied mammals in terms of their role in the spread of various pathogens with possible zoonotic effects are bats. These are animals with a very complex lifestyle, diet, and behavior. They are able to fly long distances, thus maintaining and spreading the pathogens they may be carrying. These pathogens also include vector-borne parasites and bacteria that can be spread by ectoparasites such as ticks and bat flies. In the present study, high-throughput screening was performed and we detected three bacterial pathogens: Bartonella spp., Neoehrlichia mikurensis and Mycoplasma spp., and a protozoan parasite: Theileria spp. in paired samples from bats (blood and ectoparasites). In the samples from the bat-arthropod pairs, we were able to detect Bartonella spp. and Mycoplasma spp. which also showed a high phylogenetic diversity, demonstrating the importance of these mammals and the arthropods associated with them in maintaining the spread of pathogens. Previous studies have also reported the presence of these pathogens, with one exception, Neoehrlichia mikurensis, for which phylogenetic analysis revealed less genetic divergence. High-throughput screening can detect more bacteria and parasites at once, reduce screening costs, and improve knowledge of bats as reservoirs of vector-borne pathogens. IMPORTANCE The increasing number of zoonotic pathogens is evident through extensive studies and expanded animal research. Bats, known for their role as reservoirs for various viruses, continue to be significant. However, new findings highlight the emergence of Bartonella spp., such as the human-infecting B. mayotimonensis from bats. Other pathogens like N. mikurensis, Mycoplasma spp., and Theileria spp. found in bat blood and ectoparasites raise concerns, as their impact remains uncertain. These discoveries underscore the urgency for heightened vigilance and proactive measures to understand and monitor zoonotic pathogens. By deepening our knowledge and collaboration, we can mitigate these risks, safeguarding human and animal well-being.
Collapse
Affiliation(s)
- Alexandra Corduneanu
- Department of Animal Breeding and Animal Production, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Lublin, Poland
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Lublin, Poland
| | - Aneta Wozniak
- Department of Biology and Parasitology, Medical University of Lublin, Lublin, Poland
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Áron Peter
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Attila D. Sándor
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- ELKH-ÁTE Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Budapest, Hungary
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
11
|
Tan CCS, Trew J, Peacock TP, Mok KY, Hart C, Lau K, Ni D, Orme CDL, Ransome E, Pearse WD, Coleman CM, Bailey D, Thakur N, Quantrill JL, Sukhova K, Richard D, Kahane L, Woodward G, Bell T, Worledge L, Nunez-Mino J, Barclay W, van Dorp L, Balloux F, Savolainen V. Genomic screening of 16 UK native bat species through conservationist networks uncovers coronaviruses with zoonotic potential. Nat Commun 2023; 14:3322. [PMID: 37369644 PMCID: PMC10300128 DOI: 10.1038/s41467-023-38717-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023] Open
Abstract
There has been limited characterisation of bat-borne coronaviruses in Europe. Here, we screened for coronaviruses in 48 faecal samples from 16 of the 17 bat species breeding in the UK, collected through a bat rehabilitation and conservationist network. We recovered nine complete genomes, including two novel coronavirus species, across six bat species: four alphacoronaviruses, a MERS-related betacoronavirus, and four closely related sarbecoviruses. We demonstrate that at least one of these sarbecoviruses can bind and use the human ACE2 receptor for infecting human cells, albeit suboptimally. Additionally, the spike proteins of these sarbecoviruses possess an R-A-K-Q motif, which lies only one nucleotide mutation away from a furin cleavage site (FCS) that enhances infectivity in other coronaviruses, including SARS-CoV-2. However, mutating this motif to an FCS does not enable spike cleavage. Overall, while UK sarbecoviruses would require further molecular adaptations to infect humans, their zoonotic risk warrants closer surveillance.
Collapse
Affiliation(s)
- Cedric C S Tan
- UCL Genetics Institute, University College London, Gower St, London, WC1E 6BT, UK
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Jahcub Trew
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, St Marys Medical School, Paddington, London, W2 1PG, UK
| | - Kai Yi Mok
- Department of Infectious Disease, Imperial College London, St Marys Medical School, Paddington, London, W2 1PG, UK
| | - Charlie Hart
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Kelvin Lau
- Protein Production and Structure Core Facility (PTPSP), School of Life Sciences, École Polytechnique Fédérale de Lausanne, Rte Cantonale, 1015, Lausanne, Switzerland
| | - Dongchun Ni
- Laboratory of Biological Electron Microscopy (LBEM), School of Basic Science, École Polytechnique Fédérale de Lausanne, Rte Cantonale, 1015, Lausanne, Switzerland
| | - C David L Orme
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Emma Ransome
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - William D Pearse
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Christopher M Coleman
- Queen's Medical Centre, University of Nottingham, Derby Rd, Lenton, Nottingham, NG7 2UH, UK
| | | | - Nazia Thakur
- The Pirbright Institute, Surrey, GU24 0NF, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Jessica L Quantrill
- Department of Infectious Disease, Imperial College London, St Marys Medical School, Paddington, London, W2 1PG, UK
| | - Ksenia Sukhova
- Department of Infectious Disease, Imperial College London, St Marys Medical School, Paddington, London, W2 1PG, UK
| | - Damien Richard
- UCL Genetics Institute, University College London, Gower St, London, WC1E 6BT, UK
| | - Laura Kahane
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Guy Woodward
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Thomas Bell
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Lisa Worledge
- The Bat Conservation Trust, Studio 15 Cloisters House, Cloisters Business Centre, 8 Battersea Park Road, London, SW8 4BG, UK
| | - Joe Nunez-Mino
- The Bat Conservation Trust, Studio 15 Cloisters House, Cloisters Business Centre, 8 Battersea Park Road, London, SW8 4BG, UK
| | - Wendy Barclay
- Department of Infectious Disease, Imperial College London, St Marys Medical School, Paddington, London, W2 1PG, UK
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, Gower St, London, WC1E 6BT, UK
| | - Francois Balloux
- UCL Genetics Institute, University College London, Gower St, London, WC1E 6BT, UK
| | - Vincent Savolainen
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK.
| |
Collapse
|
12
|
Evans TS, Tan CW, Aung O, Phyu S, Lin H, Coffey LL, Toe AT, Aung P, Aung TH, Aung NT, Weiss CM, Thant KZ, Htun ZT, Murray S, Wang L, Johnson CK, Thu HM. Exposure to diverse sarbecoviruses indicates frequent zoonotic spillover in human communities interacting with wildlife. Int J Infect Dis 2023; 131:57-64. [PMID: 36870470 PMCID: PMC9981523 DOI: 10.1016/j.ijid.2023.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Sarbecoviruses are a subgenus of Coronaviridae that mostly infect bats with known potential to infect humans (SARS-CoV and SARS-CoV-2). Populations in Southeast Asia, where these viruses are most likely to emerge, have been undersurveyed to date. METHODS We surveyed communities engaged in extractive industries and bat guano harvesting from rural areas in Myanmar. Participants were screened for exposure to sarbecoviruses, and their interactions with wildlife were evaluated to determine the factors associated with exposure to sarbecoviruses. RESULTS Of 693 people screened between July 2017 and February 2020, 12.1% were seropositive for sarbecoviruses. Individuals were significantly more likely to have been exposed to sarbecoviruses if their main livelihood involved working in extractive industries (logging, hunting, or harvesting of forest products; odds ratio [OR] = 2.71, P = 0.019) or had been hunting/slaughtering bats (OR = 6.09, P = 0.020). Exposure to a range of bat and pangolin sarbecoviruses was identified. CONCLUSION Exposure to diverse sarbecoviruses among high-risk human communities provides epidemiologic and immunologic evidence that zoonotic spillover is occurring. These findings inform risk mitigation efforts needed to decrease disease transmission at the bat-human interface, as well as future surveillance efforts warranted to monitor isolated populations for viruses with pandemic potential.
Collapse
Affiliation(s)
- Tierra Smiley Evans
- Epicenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, USA.
| | - Chee Wah Tan
- Duke-National University of Singapore, Singapore
| | - Ohnmar Aung
- Epicenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, USA
| | - Sabai Phyu
- Tropical and Infectious Diseases Department, Specialist Hospital Waibargi, University of Medicine (2), Yangon, Myanmar
| | - Htin Lin
- Department of Medical Research, Yangon, Myanmar
| | - Lark L Coffey
- Department of Pathology, Microbiology and Immunology Department, University of California, Davis, USA
| | - Aung Than Toe
- Epicenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, USA
| | - Pyaephyo Aung
- Nature Conservation Society Myanmar, Yangon, Myanmar
| | - Tin Htun Aung
- Nature Conservation Society Myanmar, Yangon, Myanmar
| | - Nyein Thu Aung
- Epicenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, USA
| | - Christopher M Weiss
- Department of Pathology, Microbiology and Immunology Department, University of California, Davis, USA
| | | | | | - Suzan Murray
- Global Health Program, Smithsonian Institution, Washington, USA
| | - Linfa Wang
- Duke-National University of Singapore, Singapore
| | - Christine Kreuder Johnson
- Epicenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, USA
| | | |
Collapse
|
13
|
Cohen LE, Fagre AC, Chen B, Carlson CJ, Becker DJ. Coronavirus sampling and surveillance in bats from 1996-2019: a systematic review and meta-analysis. Nat Microbiol 2023; 8:1176-1186. [PMID: 37231088 PMCID: PMC10234814 DOI: 10.1038/s41564-023-01375-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/24/2023] [Indexed: 05/27/2023]
Abstract
The emergence of SARS-CoV-2 highlights a need for evidence-based strategies to monitor bat viruses. We performed a systematic review of coronavirus sampling (testing for RNA positivity) in bats globally. We identified 110 studies published between 2005 and 2020 that collectively reported positivity from 89,752 bat samples. We compiled 2,274 records of infection prevalence at the finest methodological, spatiotemporal and phylogenetic level of detail possible from public records into an open, static database named datacov, together with metadata on sampling and diagnostic methods. We found substantial heterogeneity in viral prevalence across studies, reflecting spatiotemporal variation in viral dynamics and methodological differences. Meta-analysis identified sample type and sampling design as the best predictors of prevalence, with virus detection maximized in rectal and faecal samples and by repeat sampling of the same site. Fewer than one in five studies collected and reported longitudinal data, and euthanasia did not improve virus detection. We show that bat sampling before the SARS-CoV-2 pandemic was concentrated in China, with research gaps in South Asia, the Americas and sub-Saharan Africa, and in subfamilies of phyllostomid bats. We propose that surveillance strategies should address these gaps to improve global health security and enable the origins of zoonotic coronaviruses to be identified.
Collapse
Affiliation(s)
- Lily E Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Anna C Fagre
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Binqi Chen
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
14
|
Osofsky SA, Lieberman S, Walzer C, Lee HL, Neme LA. An immediate way to lower pandemic risk: (not) seizing the low-hanging fruit (bat). Lancet Planet Health 2023; 7:e518-e526. [PMID: 37286248 DOI: 10.1016/s2542-5196(23)00077-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/09/2022] [Accepted: 03/29/2023] [Indexed: 06/09/2023]
Abstract
What is the least that humanity can do to mitigate the risks of future pandemics, to prevent worldwide surges in human deaths, illness, and suffering-and more waves of multitrillion US dollar impacts on the global economy? The issues around our consumption and trading of wildlife are diverse and complex, with many rural communities being dependent on wild meat for their nutritional needs. But bats might be one taxonomic group that can be successfully eliminated from the human diet and other uses, with minimal costs or inconvenience to the vast majority of the 8 billion people on Earth. The order Chiroptera merits genuine respect given all that these species contribute to human food supplies through pollination services provided by the frugivores and to disease risk mitigation delivered by insectivorous species. The global community missed its chance to stop SARS-CoV and SARS-CoV-2 from emerging-how many more times will humanity allow this cycle to repeat? How long will governments ignore the science that is in front of them? It's past time for humans to do the least that can be done. A global taboo is needed whereby humanity agrees to leave bats alone, not fear them or try to chase them away or cull them, but to let them have the habitats they need and live undisturbed by humans.
Collapse
Affiliation(s)
- Steven A Osofsky
- Cornell University College of Veterinary Medicine, Cornell University, Ithaca, NY, USA; Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA; Cornell Wildlife Health Center, Cornell University, Ithaca, NY, USA; Cornell Atkinson Center, Cornell University, Ithaca, NY, USA.
| | - Susan Lieberman
- Wildlife Conservation Society, Global Conservation Program, Bronx, NY, USA
| | - Christian Walzer
- Wildlife Conservation Society, Global Conservation Program, Bronx, NY, USA; Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Helen L Lee
- Cornell University College of Veterinary Medicine, Cornell University, Ithaca, NY, USA; Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA; Cornell Wildlife Health Center, Cornell University, Ithaca, NY, USA
| | - Laurel A Neme
- Cornell Wildlife Health Center, Cornell University, Ithaca, NY, USA
| |
Collapse
|
15
|
Latinne A, Nga NTT, Long NV, Ngoc PTB, Thuy HB, Long NV, Long PT, Phuong NT, Quang LTV, Tung N, Nam VS, Duoc VT, Thinh ND, Schoepp R, Ricks K, Inui K, Padungtod P, Johnson CK, Mazet JAK, Walzer C, Olson SH, Fine AE. One Health Surveillance Highlights Circulation of Viruses with Zoonotic Potential in Bats, Pigs, and Humans in Viet Nam. Viruses 2023; 15:v15030790. [PMID: 36992498 PMCID: PMC10053906 DOI: 10.3390/v15030790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
A One Health cross-sectoral surveillance approach was implemented to screen biological samples from bats, pigs, and humans at high-risk interfaces for zoonotic viral spillover for five viral families with zoonotic potential in Viet Nam. Over 1600 animal and human samples from bat guano harvesting sites, natural bat roosts, and pig farming operations were tested for coronaviruses (CoVs), paramyxoviruses, influenza viruses, filoviruses and flaviviruses using consensus PCR assays. Human samples were also tested using immunoassays to detect antibodies against eight virus groups. Significant viral diversity, including CoVs closely related to ancestors of pig pathogens, was detected in bats roosting at the human-animal interfaces, illustrating the high risk for CoV spillover from bats to pigs in Viet Nam, where pig density is very high. Season and reproductive period were significantly associated with the detection of bat CoVs, with site-specific effects. Phylogeographic analysis indicated localized viral transmission among pig farms. Our limited human sampling did not detect any known zoonotic bat viruses in human communities living close to the bat cave and harvesting bat guano, but our serological assays showed possible previous exposure to Marburg virus-like (Filoviridae), Crimean-Congo hemorrhagic fever virus-like (Bunyaviridae) viruses and flaviviruses. Targeted and coordinated One Health surveillance helped uncover this viral pathogen emergence hotspot.
Collapse
Affiliation(s)
- Alice Latinne
- Wildlife Conservation Society, Viet Nam Country Program, Hanoi 11111, Viet Nam
- Wildlife Conservation Society, Health Program, Bronx, NY 10460, USA
| | | | - Nguyen Van Long
- Wildlife Conservation Society, Viet Nam Country Program, Hanoi 11111, Viet Nam
| | - Pham Thi Bich Ngoc
- Wildlife Conservation Society, Viet Nam Country Program, Hanoi 11111, Viet Nam
| | - Hoang Bich Thuy
- Wildlife Conservation Society, Viet Nam Country Program, Hanoi 11111, Viet Nam
| | - Nguyen Van Long
- Department of Animal Health, Ministry of Agricultural and Rural Development of Viet Nam, Hanoi 11519, Viet Nam
| | - Pham Thanh Long
- Department of Animal Health, Ministry of Agricultural and Rural Development of Viet Nam, Hanoi 11519, Viet Nam
| | | | - Le Tin Vinh Quang
- Regional Animal Health Office No. 6, Ho Chi Minh City 72106, Viet Nam
| | - Nguyen Tung
- Department of Animal Health, Ministry of Agricultural and Rural Development of Viet Nam, Hanoi 11519, Viet Nam
| | - Vu Sinh Nam
- National Institute of Hygiene and Epidemiology, Ministry of Health, Hanoi 11611, Viet Nam
| | - Vu Trong Duoc
- National Institute of Hygiene and Epidemiology, Ministry of Health, Hanoi 11611, Viet Nam
| | - Nguyen Duc Thinh
- National Institute of Hygiene and Epidemiology, Ministry of Health, Hanoi 11611, Viet Nam
| | - Randal Schoepp
- Diagnostic Systems Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Keersten Ricks
- Diagnostic Systems Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Ken Inui
- Food and Agriculture Organization of the United Nations (FAO), Country Office for Viet Nam, Hanoi 11112, Viet Nam
| | - Pawin Padungtod
- Food and Agriculture Organization of the United Nations (FAO), Country Office for Viet Nam, Hanoi 11112, Viet Nam
| | - Christine K Johnson
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Jonna A K Mazet
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Chris Walzer
- Wildlife Conservation Society, Health Program, Bronx, NY 10460, USA
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Sarah H Olson
- Wildlife Conservation Society, Health Program, Bronx, NY 10460, USA
| | - Amanda E Fine
- Wildlife Conservation Society, Viet Nam Country Program, Hanoi 11111, Viet Nam
- Wildlife Conservation Society, Health Program, Bronx, NY 10460, USA
| |
Collapse
|
16
|
Yadana S, Valitutto MT, Aung O, Hayek LAC, Yu JH, Myat TW, Lin H, Htun MM, Thu HM, Hagan E, Francisco L, Murray S. Assessing Behavioral Risk Factors Driving Zoonotic Spillover Among High-risk Populations in Myanmar. ECOHEALTH 2023; 20:31-42. [PMID: 37256491 PMCID: PMC10230129 DOI: 10.1007/s10393-023-01636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/22/2023] [Indexed: 06/01/2023]
Abstract
The increasing global emergence of zoonoses warrants improved awareness of activities that predispose vulnerable communities to greater risk of disease. Zoonotic disease outbreaks regularly occur within Myanmar and at its borders partly due to insufficient knowledge of behavioral risks, hindering participatory surveillance and reporting. This study employed a behavioral surveillance strategy among high-risk populations to understand the behavioral risks for zoonotic disease transmission in an effort to identify risk factors for pathogen spillover. To explore behavioral mechanisms of spillover in Myanmar, we aimed to: (1) evaluate the details around animal contact and types of interaction, (2) assess the association between self-reported unusual symptoms (i.e., any illness or sickness that is not known or recognized in the community or diagnosed by medical providers) and animal contact activities and (3) identify the potential risk factors including behavioral practices of self-reported illness. Participants were enrolled at two community sites: Hpa-An and Hmawbi in Southern Myanmar. A behavioral questionnaire was administered to understand participants' animal exposures, behaviors and self-reported illnesses. From these responses, associations between (1) animal contact activities and self-reported unusual illnesses, and (2) potential risk factors and self-reported unusual illness were tested. Contact with poultry seemed to be very frequent (91.1%) and many participants reported raising, handling and having poultry in their houses as well as slaughtering or being scratched/bitten by them, followed by contact with rodents (57.8%) and swine (17.9%). Compared to participants who did not have any unusual symptoms, participants who had unusual symptoms in the past year were more likely to have sold dead animals (OR = 13.6, 95% CI 6.8-27.2), slaughtered (OR = 2.4, 95% CI 1.7-3.3), raised (OR = 3.4, 95% CI 2.3-5.0) or handled animals (OR = 2.1, 95% CI 1.2-3.6), and had eaten sick (OR = 4.4, 95% CI 3.0-6.4) and/or dead animals (OR = 6.0, 95% CI 4.1-8.8) in the same year. Odds of having reported unusual symptoms was higher among those involved in animal production business (OR = 3.4, 95% CI 1.9-6.2) and animal-involved livelihoods (OR = 3.3, 95% CI 1.5-7.2) compared to other livelihoods. The results suggest that there is a high level of interaction between humans, livestock and wild animals in communities we investigated in Myanmar. The study highlights the specific high-risk behaviors as they relate to animal contact and demographic risk factors for zoonotic spillover. Our findings contribute to human behavioral data needed to develop targeted interventions to prevent zoonotic disease transmission at human-animal interfaces.
Collapse
Affiliation(s)
- Su Yadana
- EcoHealth Alliance, 520 Eighth Avenue Ste 1200, New York, NY, 10018, USA
| | - Marc T Valitutto
- EcoHealth Alliance, 520 Eighth Avenue Ste 1200, New York, NY, 10018, USA.
- Global Health Program, Smithsonian's National Zoological Park and Conservation Biology Institute, 3001 Connecticut Ave NW, Washington DC, 20008, USA.
| | - Ohnmar Aung
- Global Health Program, Smithsonian's National Zoological Park and Conservation Biology Institute, 3001 Connecticut Ave NW, Washington DC, 20008, USA
| | - Lee-Ann C Hayek
- National Museum of Natural History, Smithsonian Institution. 10th St. & Constitution Ave NW, Washington DC, 20560, USA
| | - Jennifer H Yu
- Global Health Program, Smithsonian's National Zoological Park and Conservation Biology Institute, 3001 Connecticut Ave NW, Washington DC, 20008, USA
| | - Theingi Win Myat
- Department of Medical Research. No 5, Ziwaka Road, Dagon, Yangon, 1119, Myanmar
| | - Htin Lin
- Department of Medical Research. No 5, Ziwaka Road, Dagon, Yangon, 1119, Myanmar
| | - Moh Moh Htun
- Department of Medical Research. No 5, Ziwaka Road, Dagon, Yangon, 1119, Myanmar
| | - Hlaing Myat Thu
- Department of Medical Research. No 5, Ziwaka Road, Dagon, Yangon, 1119, Myanmar
| | - Emily Hagan
- EcoHealth Alliance, 520 Eighth Avenue Ste 1200, New York, NY, 10018, USA
| | - Leilani Francisco
- EcoHealth Alliance, 520 Eighth Avenue Ste 1200, New York, NY, 10018, USA
| | - Suzan Murray
- Global Health Program, Smithsonian's National Zoological Park and Conservation Biology Institute, 3001 Connecticut Ave NW, Washington DC, 20008, USA
| |
Collapse
|
17
|
Intestinal Tropism of a Betacoronavirus ( Merbecovirus) in Nathusius's Pipistrelle Bat ( Pipistrellus nathusii), Its Natural Host. J Virol 2023; 97:e0009923. [PMID: 36856426 PMCID: PMC10062147 DOI: 10.1128/jvi.00099-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The emergence of several bat coronavirus-related disease outbreaks in human and domestic animals has fueled surveillance of coronaviruses in bats worldwide. However, little is known about how these viruses interact with their natural hosts. We demonstrate a Betacoronavirus (subgenus Merbecovirus), PN-βCoV, in the intestine of its natural host, Nathusius's Pipistrelle Bat (Pipistrellus nathusii), by combining molecular and microscopy techniques. Eighty-eight P. nathusii bat carcasses were tested for PN-βCoV RNA by RT-qPCR, of which 25 bats (28%) tested positive. PN-βCoV RNA was more often detected in samples of the intestinal tract than in other sample types. In addition, viral RNA loads were higher in intestinal samples compared to other sample types, both on average and in each individual bat. In one bat, we demonstrated Merbecovirus antigen and PN-βCoV RNA expression in intestinal epithelium and the underlying connective tissue using immunohistochemistry and in situ hybridization, respectively. These results indicate that PN-βCoV has a tropism for the intestinal epithelium of its natural host, Nathusius's Pipistrelle Bat, and imply that the fecal-oral route is a possible route of transmission. IMPORTANCE Virtually all mammal species circulate coronaviruses. Most of these viruses will infect one host species; however, coronaviruses are known to include species that can infect multiple hosts, for example the well-known virus that caused a pandemic, SARS-CoV-2. Chiroptera (bats) include over 1,400 different species, which are expected to harbor a great variety of coronaviruses. However, we know very little about how any of these coronaviruses interact with their bat hosts; for example, we do not know their modes of transmissions, or which cells they infect. Thus, we have a limited understanding of coronavirus infections in this important host group. The significance of our study is that we learned that a bat coronavirus that occurs in a common bat species in Europe has a tropism for the intestines. This implies the fecal-oral route is a likely transmission route.
Collapse
|
18
|
Kuchinski KS, Loos KD, Suchan DM, Russell JN, Sies AN, Kumakamba C, Muyembe F, Mbala Kingebeni P, Ngay Lukusa I, N’Kawa F, Atibu Losoma J, Makuwa M, Gillis A, LeBreton M, Ayukekbong JA, Lerminiaux NA, Monagin C, Joly DO, Saylors K, Wolfe ND, Rubin EM, Muyembe Tamfum JJ, Prystajecky NA, McIver DJ, Lange CE, Cameron ADS. Targeted genomic sequencing with probe capture for discovery and surveillance of coronaviruses in bats. eLife 2022; 11:e79777. [PMID: 36346652 PMCID: PMC9643004 DOI: 10.7554/elife.79777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Public health emergencies like SARS, MERS, and COVID-19 have prioritized surveillance of zoonotic coronaviruses, resulting in extensive genomic characterization of coronavirus diversity in bats. Sequencing viral genomes directly from animal specimens remains a laboratory challenge, however, and most bat coronaviruses have been characterized solely by PCR amplification of small regions from the best-conserved gene. This has resulted in limited phylogenetic resolution and left viral genetic factors relevant to threat assessment undescribed. In this study, we evaluated whether a technique called hybridization probe capture can achieve more extensive genome recovery from surveillance specimens. Using a custom panel of 20,000 probes, we captured and sequenced coronavirus genomic material in 21 swab specimens collected from bats in the Democratic Republic of the Congo. For 15 of these specimens, probe capture recovered more genome sequence than had been previously generated with standard amplicon sequencing protocols, providing a median 6.1-fold improvement (ranging up to 69.1-fold). Probe capture data also identified five novel alpha- and betacoronaviruses in these specimens, and their full genomes were recovered with additional deep sequencing. Based on these experiences, we discuss how probe capture could be effectively operationalized alongside other sequencing technologies for high-throughput, genomics-based discovery and surveillance of bat coronaviruses.
Collapse
Affiliation(s)
- Kevin S Kuchinski
- Department of Pathology and Laboratory Medicine, University of British ColumbiaVancouverCanada
- Public Health Laboratory, British Columbia Centre for Disease ControlVancouverCanada
| | - Kara D Loos
- Department of Biology, Faculty of Science, University of ReginaReginaCanada
- Institute for Microbial Systems and Society, Faculty of Science, University of ReginaReginaCanada
| | - Danae M Suchan
- Department of Biology, Faculty of Science, University of ReginaReginaCanada
- Institute for Microbial Systems and Society, Faculty of Science, University of ReginaReginaCanada
| | - Jennifer N Russell
- Department of Biology, Faculty of Science, University of ReginaReginaCanada
- Institute for Microbial Systems and Society, Faculty of Science, University of ReginaReginaCanada
| | - Ashton N Sies
- Department of Biology, Faculty of Science, University of ReginaReginaCanada
- Institute for Microbial Systems and Society, Faculty of Science, University of ReginaReginaCanada
| | | | | | - Placide Mbala Kingebeni
- Metabiota IncKinshasaDemocratic Republic of the Congo
- Institut National de Recherche BiomédicaleKinshasaDemocratic Republic of the Congo
| | | | - Frida N’Kawa
- Metabiota IncKinshasaDemocratic Republic of the Congo
| | | | - Maria Makuwa
- Metabiota IncKinshasaDemocratic Republic of the Congo
- Labyrinth Global Health IncSt. PetersburgUnited States
| | - Amethyst Gillis
- Metabiota IncSan FranciscoUnited States
- Development AlternativesWashingtonUnited States
| | | | | | - Nicole A Lerminiaux
- Department of Biology, Faculty of Science, University of ReginaReginaCanada
- Institute for Microbial Systems and Society, Faculty of Science, University of ReginaReginaCanada
| | - Corina Monagin
- Metabiota IncSan FranciscoUnited States
- One Health Institute, School of Veterinary Medicine, University of California, DavisDavisUnited States
| | - Damien O Joly
- MetabiotaNanaimoCanada
- Nyati Health ConsultingNanaimoCanada
| | - Karen Saylors
- Labyrinth Global Health IncSt. PetersburgUnited States
- Metabiota IncSan FranciscoUnited States
| | | | | | | | - Natalie A Prystajecky
- Department of Pathology and Laboratory Medicine, University of British ColumbiaVancouverCanada
- Public Health Laboratory, British Columbia Centre for Disease ControlVancouverCanada
| | - David J McIver
- MetabiotaNanaimoCanada
- Institute for Global Health Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Christian E Lange
- Labyrinth Global Health IncSt. PetersburgUnited States
- MetabiotaNanaimoCanada
| | - Andrew DS Cameron
- Department of Biology, Faculty of Science, University of ReginaReginaCanada
- Institute for Microbial Systems and Society, Faculty of Science, University of ReginaReginaCanada
| |
Collapse
|
19
|
George U, George O, Oragwa A, Motayo B, Kamani J, Adamu A, Sowemimo O, Adeleke R, Abalaka S, Sani N, Oguzie J, Eromon P, Folarin O, Happi A, Komolafe I, Happi C. Detection of Alpha- and Betacoronaviruses in Frugivorous and Insectivorous Bats in Nigeria. Pathogens 2022; 11:pathogens11091017. [PMID: 36145450 PMCID: PMC9502725 DOI: 10.3390/pathogens11091017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The rise of bat-associated zoonotic viruses necessitates a close monitoring of their natural hosts. Since the detection of severe acute respiratory syndrome coronavirus (SARS-CoV), it is evident that bats are vital reservoirs of coronaviruses (CoVs). In this study, we investigated the presence of CoVs in multiple bat species in Nigeria to identify viruses in bats at high-risk human contact interfaces. Four hundred and nine bats comprising four bat species close to human habitats were individually sampled from five states in Nigeria between 2019 and 2021. Coronavirus detection was done using broadly reactive consensus PCR primers targeting the RNA-dependent RNA polymerase (RdRp) gene of CoVs. Coronavirus RNA was detected in 39 samples (9.5%, CI 95%: [7.0, 12.8]), of which 29 were successfully sequenced. The identified CoVs in Nigerian bats were from the unclassified African alphacoronavirus lineage and betacoronavirus lineage D (Nobecovirus), with one sample from Hipposideros ruber coinfected with alphacoronavirus and betacoronavirus. Different bat species roosting in similar or other places had CoVs from the same genetic lineage. The phylogenetic and evolutionary dynamics data indicated a high CoV diversity in Nigeria, while host switching may have contributed to CoV evolution. Robust sentinel surveillance is recommended to enhance our knowledge of emerging and re-emerging coronaviruses.
Collapse
Affiliation(s)
- Uwem George
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede 232102, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede 232102, Osun State, Nigeria
| | - Oluwadamilola George
- Ibadan Diagnostic and Epidemiology Laboratory, National Veterinary Research Institute, Mokola, Ibadan 200212, Oyo State, Nigeria
| | - Arthur Oragwa
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Jos,
Jos 930003, Plateau State, Nigeria
| | - Babatunde Motayo
- Department of Medical Microbiology, Federal Medical Centre, Abeokuta 110222, Ogun State, Nigeria
| | - Joshua Kamani
- Parasitology Division, National Veterinary Research Institute (NVRI), PMB 01,
Vom 930103, Plateau State, Nigeria
| | - Andrew Adamu
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine,
James Cook University, Townsville, QLD 4811, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, 1 James Cook Drive, Bebegu Yumba Campus, Douglas, QLD 4811, Australia
- Department of Veterinary Public Health and Preventive Medicine, University of Abuja,
Abuja 900105, Federal Capital Territory, Nigeria
| | - Oluyomi Sowemimo
- Department of Zoology, Faculty of Science, Obafemi Awolowo University, Ile Ife 220005, Osun State, Nigeria
| | - Richard Adeleke
- Immunology and Infectious Diseases, College of Veterinary Medicine, Cornell University, New York, NY 14853, USA
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ibadan,
Ibadan 200132, Oyo State, Nigeria
| | - Samson Abalaka
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Abuja,
Abuja 900105, Federal Capital Territory, Nigeria
| | - Nuhu Sani
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Abuja,
Abuja 900105, Federal Capital Territory, Nigeria
| | - Judith Oguzie
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede 232102, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede 232102, Osun State, Nigeria
| | - Philomena Eromon
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede 232102, Osun State, Nigeria
| | - Onikepe Folarin
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede 232102, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede 232102, Osun State, Nigeria
| | - Anise Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede 232102, Osun State, Nigeria
| | - Isaac Komolafe
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede 232102, Osun State, Nigeria
- Correspondence: (I.K.); (C.H.)
| | - Christian Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede 232102, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede 232102, Osun State, Nigeria
- Correspondence: (I.K.); (C.H.)
| |
Collapse
|
20
|
Banerjee S, Wang X, Du S, Zhu C, Jia Y, Wang Y, Cai Q. Comprehensive role of SARS-CoV-2 spike glycoprotein in regulating host signaling pathway. J Med Virol 2022; 94:4071-4087. [PMID: 35488404 PMCID: PMC9348444 DOI: 10.1002/jmv.27820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/06/2022]
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, global public health and the economy have suffered unprecedented damage. Based on the increasing related literature, the characteristics and pathogenic mechanisms of the virus, and epidemiological and clinical features of the disease are being rapidly discovered. The spike glycoprotein (S protein), as a key antigen of SARS-CoV-2 for developing vaccines, antibodies, and drug targets, has been shown to play an important role in viral entry, tissue tropism, and pathogenesis. In this review, we summarize the molecular mechanisms of interaction between S protein and host factors, especially receptor-mediated viral modulation of host signaling pathways, and highlight the progression of potential therapeutic targets, prophylactic and therapeutic agents for prevention and treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Department of Biotechnology and BioengineeringKoba Institutional AreaGandhinagarGujaratIndia
| | - Xinyu Wang
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, & School of Basic Medical Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Shujuan Du
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, & School of Basic Medical Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Caixia Zhu
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, & School of Basic Medical Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yuping Jia
- Shandong Academy of Pharmaceutical SciencesJinanChina
| | - Yuyan Wang
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, & School of Basic Medical Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qiliang Cai
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, & School of Basic Medical Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
21
|
Boeger WA, Brooks DR, Trivellone V, Agosta SJ, Hoberg EP. Ecological super-spreaders drive host-range oscillations: Omicron and risk space for emerging infectious disease. Transbound Emerg Dis 2022; 69:e1280-e1288. [PMID: 35411706 PMCID: PMC9115439 DOI: 10.1111/tbed.14557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 11/28/2022]
Abstract
The unusual genetic diversity of the Omicron strain has led to speculation about its origin. The mathematical modelling platform developed for the Stockholm Paradigm (SP) indicates strongly that it has retro-colonized humans from an unidentified nonhuman mammal, likely originally infected by humans. The relationship between Omicron and all other SARS-CoV-2 variants indicates oscillations among hosts, a core part of the SP. Such oscillations result from the emergence of novel variants following colonization of new hosts, replenishing and expanding the risk space for disease emergence. The SP predicts that pathogens colonize new hosts using pre-existing capacities. Those events are thus predictable to a certain extent. Novel variants emerge after a colonization and are not predictable. This makes it imperative to take proactive measures for anticipating emerging infectious diseases (EID) and mitigating their impact. The SP suggests a policy protocol, DAMA, to accomplish this goal. DAMA comprises: DOCUMENT to detect pathogens before they emerge in new places or colonize new hosts; ASSESS to determine risk; MONITOR to detect changes in pathogen populations that increase the risk of outbreaks and ACT to prevent outbreaks when possible and minimize their impact when they occur.
Collapse
Affiliation(s)
- Walter A. Boeger
- Biological InteractionsUniversidade Federal do ParanáCuritibaBrazil
| | - Daniel R. Brooks
- Eötvös Loránd Research NetworkCentre for Ecological ResearchInstitute of EvolutionBudapestHungary
- Stellenbosch Institute for Advanced StudyStellenboschSouth Africa
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Valeria Trivellone
- Illinois Natural History SurveyPrairie Research InstituteUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
| | - Salvatore J. Agosta
- Stellenbosch Institute for Advanced StudyStellenboschSouth Africa
- Center for Environmental StudiesVCU Life SciencesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Eric P. Hoberg
- Department of Pathobiological SciencesSchool of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Museum of Southwestern BiologyDepartment of BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| |
Collapse
|
22
|
Sánchez CA, Li H, Phelps KL, Zambrana-Torrelio C, Wang LF, Zhou P, Shi ZL, Olival KJ, Daszak P. A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia. Nat Commun 2022; 13:4380. [PMID: 35945197 PMCID: PMC9363439 DOI: 10.1038/s41467-022-31860-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
Emerging diseases caused by coronaviruses of likely bat origin (e.g., SARS, MERS, SADS, COVID-19) have disrupted global health and economies for two decades. Evidence suggests that some bat SARS-related coronaviruses (SARSr-CoVs) could infect people directly, and that their spillover is more frequent than previously recognized. Each zoonotic spillover of a novel virus represents an opportunity for evolutionary adaptation and further spread; therefore, quantifying the extent of this spillover may help target prevention programs. We derive current range distributions for known bat SARSr-CoV hosts and quantify their overlap with human populations. We then use probabilistic risk assessment and data on human-bat contact, human viral seroprevalence, and antibody duration to estimate that a median of 66,280 people (95% CI: 65,351-67,131) are infected with SARSr-CoVs annually in Southeast Asia. These data on the geography and scale of spillover can be used to target surveillance and prevention programs for potential future bat-CoV emergence.
Collapse
Affiliation(s)
| | | | | | | | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Peng Zhou
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zheng-Li Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | | |
Collapse
|
23
|
Speer KA, Hawkins MTR, Flores MFC, McGowen MR, Fleischer RC, Maldonado JE, Campana MG, Muletz-Wolz CR. A comparative study of RNA yields from museum specimens, including an optimized protocol for extracting RNA from formalin-fixed specimens. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.953131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal specimens in natural history collections are invaluable resources in examining the historical context of pathogen dynamics in wildlife and spillovers to humans. For example, natural history specimens may reveal new associations between bat species and coronaviruses. However, RNA viruses are difficult to study in historical specimens because protocols for extracting RNA from these specimens have not been optimized. Advances have been made in our ability to recover nucleic acids from formalin-fixed paraffin-embedded samples (FFPE) commonly used in human clinical studies, yet other types of formalin preserved samples have received less attention. Here, we optimize the recovery of RNA from formalin-fixed ethanol-preserved museum specimens in order to improve the usability of these specimens in surveys for zoonotic diseases. We provide RNA quality and quantity measures for replicate tissues subsamples of 22 bat specimens from five bat genera (Rhinolophus, Hipposideros, Megareops, Cynopterus, and Nyctalus) collected in China and Myanmar from 1886 to 2003. As tissues from a single bat specimen were preserved in a variety of ways, including formalin-fixed (8 bats), ethanol-preserved and frozen (13 bats), and flash frozen (2 bats), we were able to compare RNA quality and yield across different preservation methods. RNA extracted from historical museum specimens is highly fragmented, but usable for short-read sequencing and targeted amplification. Incubation of formalin-fixed samples with Proteinase-K following thorough homogenization improves RNA yield. This optimized protocol extends the types of data that can be derived from existing museum specimens and facilitates future examinations of host and pathogen RNA from specimens.
Collapse
|
24
|
Ruiz-Aravena M, McKee C, Gamble A, Lunn T, Morris A, Snedden CE, Yinda CK, Port JR, Buchholz DW, Yeo YY, Faust C, Jax E, Dee L, Jones DN, Kessler MK, Falvo C, Crowley D, Bharti N, Brook CE, Aguilar HC, Peel AJ, Restif O, Schountz T, Parrish CR, Gurley ES, Lloyd-Smith JO, Hudson PJ, Munster VJ, Plowright RK. Ecology, evolution and spillover of coronaviruses from bats. Nat Rev Microbiol 2022; 20:299-314. [PMID: 34799704 PMCID: PMC8603903 DOI: 10.1038/s41579-021-00652-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 12/24/2022]
Abstract
In the past two decades, three coronaviruses with ancestral origins in bats have emerged and caused widespread outbreaks in humans, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first SARS epidemic in 2002-2003, the appreciation of bats as key hosts of zoonotic coronaviruses has advanced rapidly. More than 4,000 coronavirus sequences from 14 bat families have been identified, yet the true diversity of bat coronaviruses is probably much greater. Given that bats are the likely evolutionary source for several human coronaviruses, including strains that cause mild upper respiratory tract disease, their role in historic and future pandemics requires ongoing investigation. We review and integrate information on bat-coronavirus interactions at the molecular, tissue, host and population levels. We identify critical gaps in knowledge of bat coronaviruses, which relate to spillover and pandemic risk, including the pathways to zoonotic spillover, the infection dynamics within bat reservoir hosts, the role of prior adaptation in intermediate hosts for zoonotic transmission and the viral genotypes or traits that predict zoonotic capacity and pandemic potential. Filling these knowledge gaps may help prevent the next pandemic.
Collapse
Affiliation(s)
- Manuel Ruiz-Aravena
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Clifton McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Amandine Gamble
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tamika Lunn
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Aaron Morris
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Celine E Snedden
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Claude Kwe Yinda
- National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Julia R Port
- National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - David W Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Yao Yu Yeo
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Christina Faust
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Elinor Jax
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Lauren Dee
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Devin N Jones
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Maureen K Kessler
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - Caylee Falvo
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Daniel Crowley
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Nita Bharti
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Cara E Brook
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Alison J Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Colin R Parrish
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Emily S Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter J Hudson
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Vincent J Munster
- National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Raina K Plowright
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
25
|
Kettenburg G, Kistler A, Ranaivoson HC, Ahyong V, Andrianiaina A, Andry S, DeRisi JL, Gentles A, Raharinosy V, Randriambolamanantsoa TH, Ravelomanantsoa NAF, Tato CM, Dussart P, Heraud JM, Brook CE. Full Genome Nobecovirus Sequences From Malagasy Fruit Bats Define a Unique Evolutionary History for This Coronavirus Clade. Front Public Health 2022; 10:786060. [PMID: 35223729 PMCID: PMC8873168 DOI: 10.3389/fpubh.2022.786060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Bats are natural reservoirs for both Alpha- and Betacoronaviruses and the hypothesized original hosts of five of seven known zoonotic coronaviruses. To date, the vast majority of bat coronavirus research has been concentrated in Asia, though coronaviruses are globally distributed; indeed, SARS-CoV and SARS-CoV-2-related Betacoronaviruses in the subgenus Sarbecovirus have been identified circulating in Rhinolophid bats in both Africa and Europe, despite the relative dearth of surveillance in these regions. As part of a long-term study examining the dynamics of potentially zoonotic viruses in three species of endemic Madagascar fruit bat (Pteropus rufus, Eidolon dupreanum, Rousettus madagascariensis), we carried out metagenomic Next Generation Sequencing (mNGS) on urine, throat, and fecal samples obtained from wild-caught individuals. We report detection of RNA derived from Betacoronavirus subgenus Nobecovirus in fecal samples from all three species and describe full genome sequences of novel Nobecoviruses in P. rufus and R. madagascariensis. Phylogenetic analysis indicates the existence of five distinct Nobecovirus clades, one of which is defined by the highly divergent ancestral sequence reported here from P. rufus bats. Madagascar Nobecoviruses derived from P. rufus and R. madagascariensis demonstrate, respectively, Asian and African phylogeographic origins, mirroring those of their fruit bat hosts. Bootscan recombination analysis indicates significant selection has taken place in the spike, nucleocapsid, and NS7 accessory protein regions of the genome for viruses derived from both bat hosts. Madagascar offers a unique phylogeographic nexus of bats and viruses with both Asian and African phylogeographic origins, providing opportunities for unprecedented mixing of viral groups and, potentially, recombination. As fruit bats are handled and consumed widely across Madagascar for subsistence, understanding the landscape of potentially zoonotic coronavirus circulation is essential for mitigation of future zoonotic threats.
Collapse
Affiliation(s)
- Gwenddolen Kettenburg
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
| | - Amy Kistler
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Hafaliana Christian Ranaivoson
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
- Virology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Vida Ahyong
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Angelo Andrianiaina
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Santino Andry
- Department of Entomology, University of Antananarivo, Antananarivo, Madagascar
| | | | - Anecia Gentles
- Odum School of Ecology, University of Georgia, Athens, GA, United States
| | | | | | | | | | - Philippe Dussart
- Virology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Jean-Michel Heraud
- Virology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Cara E. Brook
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
| |
Collapse
|
26
|
Galindo-González J. Live animal markets: Identifying the origins of emerging infectious diseases. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 25:100310. [PMID: 34931177 PMCID: PMC8674032 DOI: 10.1016/j.coesh.2021.100310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Emerging infectious diseases (EIDs) of zoonotic origin appear, affect a population and can spread rapidly. At the beginning of 2020, the World Health Organization pronounced an emergency public health advisory because of the SARS-CoV-2 coronavirus outbreak, and declared that COVID-19 had reached the level of a pandemic, rapidly spreading around the world. In order to identify one of the origins of EIDs, and propose some control alternatives, an extensive review was conducted of the available literature. The problem can originate in live animal markets, where animal species of all kinds, from different origins, ecosystems, and taxonomic groups are caged and crowded together, sharing the same unsanitary and unnatural space, food, water, and also the ecto- and endoparasitic vectors of disease. They defecate on each other, leading to the exchange of pathogenic and parasitic microorganisms, forcing interactions among species that should never happen. This is the ideal scenario for causing zoonoses and outbreaks of EIDs. We must start by stopping the illegal collection and sale of wild animals in markets. The destruction of ecosystems and forests also promote zoonoses and outbreaks of EIDs. Science and knowledge should be the basis of the decisions and policies for the development of management strategies. Wildlife belongs in its natural habitat, which must be defended, conserved, and restored at all costs.
Collapse
Affiliation(s)
- Jorge Galindo-González
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Av. Culturas Veracruzanas # 101, Zona Universitaria C.P. 91090, Xalapa, Ver., Mexico
| |
Collapse
|
27
|
Ilkhani H, Hedayat N, Farhad S. Novel approaches for rapid detection of COVID-19 during the pandemic: A review. Anal Biochem 2021; 634:114362. [PMID: 34478703 PMCID: PMC8406551 DOI: 10.1016/j.ab.2021.114362] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 02/03/2023]
Abstract
The rapid spread of the SARS-CoV-2 virus that caused the COVID-19 disease, has highlighted our urgent need for sensitive, fast and accurate diagnostic technologies. In fact, one of the main challenges for flatting COVID-19 spread charts is the ability to accurately and rapidly identify asymptomatic cases that result in spreading the virus to close contacts. SARS-CoV-2 virus mutation is also relatively rapid, which makes the detection of COVID-19 diseases still crucial even after the vaccination. Conventional techniques, which are commercially available have focused on clinical manifestation, along with molecular and serological detection tools that can identify the SARS-CoV-2 virus however, owing to various disadvantages including low specificity and sensitivity, a quick, low cost and easy approach is needed for diagnosis of COVID-19. Scientists are now showing extensive interest in an effective portable and simple detection method to diagnose COVID-19. There are several novel methods and approaches that are considered viable advanced systems that can meet the demands. This study reviews the new approaches and sensing technologies that work on COVID-19 diagnosis for easy and successful detection of SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Hoda Ilkhani
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM, 87144, United States.
| | - Nader Hedayat
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, United States
| | - Siamak Farhad
- Advanced Energy & Sensor Lab, Department of Mechanical Engineering, The University of Akron, Akron, OH, 44325, United States.
| |
Collapse
|
28
|
Ali S, Singh A, Sharief N, Yadav M, Siddiqui S, Pandey V, Raikwar A, Singh A. Coronaviruses: An overview with special emphasis on COVID-19 outbreak with musculoskeletal manifestations. World J Orthop 2021; 12:620-628. [PMID: 34631446 PMCID: PMC8472448 DOI: 10.5312/wjo.v12.i9.620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
An acute respiratory illness caused by a novel coronavirus, namely, severe acute respiratory syndrome coronavirus 2, the virus that causes coronavirus disease 2019 (COVID-19), began spreading across China in late December 2019. The disease gained global attention as it spread worldwide. Since the COVID-19 pandemic began, many studies have focused on the impact of the disease on conditions such as diabetes, cardiovascular disease, pulmonary disorders, and renal malfunction. However, few studies have focused on musculoskeletal disorders related to COVID-19 infection. In this review, we update the current knowledge on the coronavirus with special reference to its effects during and after the pandemic on musculoskeletal aliments, which may inform clinical practice.
Collapse
Affiliation(s)
- Sabir Ali
- Department of Paediatric Orthopaedics, King George’s Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Ajai Singh
- Department of Paediatric Orthopaedics, King George’s Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Nayeem Sharief
- Department of Paediatric Orthopaedics, King George’s Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Manish Yadav
- Department of Paediatric Orthopaedics, King George’s Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Salma Siddiqui
- Department of Paediatric Orthopaedics, King George’s Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Vaishnavi Pandey
- Department of Paediatric Orthopaedics, King George’s Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Archana Raikwar
- Department of Paediatric Orthopaedics, King George’s Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Anamika Singh
- Department of Paediatric Orthopaedics, King George’s Medical University, Lucknow 226003, Uttar Pradesh, India
| |
Collapse
|
29
|
Sánchez CA, Li H, Phelps KL, Zambrana-Torrelio C, Wang LF, Olival KJ, Daszak P. A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34545371 DOI: 10.1101/2021.09.09.21263359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Emerging diseases caused by coronaviruses of likely bat origin (e.g. SARS, MERS, SADS and COVID-19) have disrupted global health and economies for two decades. Evidence suggests that some bat SARS-related coronaviruses (SARSr-CoVs) could infect people directly, and that their spillover is more frequent than previously recognized. Each zoonotic spillover of a novel virus represents an opportunity for evolutionary adaptation and further spread; therefore, quantifying the extent of this "hidden" spillover may help target prevention programs. We derive biologically realistic range distributions for known bat SARSr-CoV hosts and quantify their overlap with human populations. We then use probabilistic risk assessment and data on human-bat contact, human SARSr-CoV seroprevalence, and antibody duration to estimate that ∼400,000 people (median: ∼50,000) are infected with SARSr-CoVs annually in South and Southeast Asia. These data on the geography and scale of spillover can be used to target surveillance and prevention programs for potential future bat-CoV emergence.
Collapse
|
30
|
Giles JR, Peel AJ, Wells K, Plowright RK, McCallum H, Restif O. Optimizing noninvasive sampling of a zoonotic bat virus. Ecol Evol 2021; 11:12307-12321. [PMID: 34594501 PMCID: PMC8462156 DOI: 10.1002/ece3.7830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Outbreaks of infectious viruses resulting from spillover events from bats have brought much attention to bat-borne zoonoses, which has motivated increased ecological and epidemiological studies on bat populations. Field sampling methods often collect pooled samples of bat excreta from plastic sheets placed under-roosts. However, positive bias is introduced because multiple individuals may contribute to pooled samples, making studies of viral dynamics difficult. Here, we explore the general issue of bias in spatial sample pooling using Hendra virus in Australian bats as a case study. We assessed the accuracy of different under-roost sampling designs using generalized additive models and field data from individually captured bats and pooled urine samples. We then used theoretical simulation models of bat density and under-roost sampling to understand the mechanistic drivers of bias. The most commonly used sampling design estimated viral prevalence 3.2 times higher than individual-level data, with positive bias 5-7 times higher than other designs due to spatial autocorrelation among sampling sheets and clustering of bats in roosts. Simulation results indicate using a stratified random design to collect 30-40 pooled urine samples from 80 to 100 sheets, each with an area of 0.75-1 m2, and would allow estimation of true prevalence with minimum sampling bias and false negatives. These results show that widely used under-roost sampling techniques are highly sensitive to viral presence, but lack specificity, providing limited information regarding viral dynamics. Improved estimation of true prevalence can be attained with minor changes to existing designs such as reducing sheet size, increasing sheet number, and spreading sheets out within the roost area. Our findings provide insight into how spatial sample pooling is vulnerable to bias for a wide range of systems in disease ecology, where optimal sampling design is influenced by pathogen prevalence, host population density, and patterns of aggregation.
Collapse
Affiliation(s)
- John R. Giles
- Department of EpidemiologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
- Environmental Futures Research InstituteGriffith UniversityBrisbaneQldAustralia
| | - Alison J. Peel
- Environmental Futures Research InstituteGriffith UniversityBrisbaneQldAustralia
| | | | - Raina K. Plowright
- Department of Microbiology and ImmunologyMontana State UniversityBozemanMTUSA
| | - Hamish McCallum
- Environmental Futures Research InstituteGriffith UniversityBrisbaneQldAustralia
| | - Olivier Restif
- Disease Dynamics UnitDepartment of Veterinary MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
31
|
Abstract
CoVID-19 is a multi-symptomatic disease which has made a global impact due to its ability to spread rapidly, and its relatively high mortality rate. Beyond the heroic efforts to develop vaccines, which we do not discuss herein, the response of scientists and clinicians to this complex problem has reflected the need to detect CoVID-19 rapidly, to diagnose patients likely to show adverse symptoms, and to treat severe and critical CoVID-19. Here we aim to encapsulate these varied and sometimes conflicting approaches and the resulting data in terms of chemistry and biology. In the process we highlight emerging concepts, and potential future applications that may arise out of this immense effort.
Collapse
Affiliation(s)
| | - Yimon Aye
- Swiss Federal Institute of Technology in Lausanne (EPFL)1015LausanneSwitzerland
| |
Collapse
|
32
|
Singh OP, Vallejo M, El-Badawy IM, Aysha A, Madhanagopal J, Mohd Faudzi AA. Classification of SARS-CoV-2 and non-SARS-CoV-2 using machine learning algorithms. Comput Biol Med 2021; 136:104650. [PMID: 34329865 PMCID: PMC8294595 DOI: 10.1016/j.compbiomed.2021.104650] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/28/2022]
Abstract
Due to the continued evolution of the SARS-CoV-2 pandemic, researchers worldwide are working to mitigate, suppress its spread, and better understand it by deploying digital signal processing (DSP) and machine learning approaches. This study presents an alignment-free approach to classify the SARS-CoV-2 using complementary DNA, which is DNA synthesized from the single-stranded RNA virus. Herein, a total of 1582 samples, with different lengths of genome sequences from different regions, were collected from various data sources and divided into a SARS-CoV-2 and a non-SARS-CoV-2 group. We extracted eight biomarkers based on three-base periodicity, using DSP techniques, and ranked those based on a filter-based feature selection. The ranked biomarkers were fed into k-nearest neighbor, support vector machines, decision trees, and random forest classifiers for the classification of SARS-CoV-2 from other coronaviruses. The training dataset was used to test the performance of the classifiers based on accuracy and F-measure via 10-fold cross-validation. Kappa-scores were estimated to check the influence of unbalanced data. Further, 10 × 10 cross-validation paired t-test was utilized to test the best model with unseen data. Random forest was elected as the best model, differentiating the SARS-CoV-2 coronavirus from other coronaviruses and a control a group with an accuracy of 97.4 %, sensitivity of 96.2 %, and specificity of 98.2 %, when tested with unseen samples. Moreover, the proposed algorithm was computationally efficient, taking only 0.31 s to compute the genome biomarkers, outperforming previous studies.
Collapse
Affiliation(s)
| | - Marta Vallejo
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Ismail M El-Badawy
- Electronics and Communications Engineering Department, Arab Academy for Science and Technology, Cairo, Egypt
| | - Ali Aysha
- School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Jagannathan Madhanagopal
- School of Physiotherapy, Faculty of Allied Health Professional, AIMST University, Semeling Campus, Bedong, Kedah, Malaysia
| | | |
Collapse
|
33
|
Agrawal A, Kashikar S, Deo K, Gaidhane A, Bansod A, Jaiswal P, Khatib MN. Severe Acute Respiratory Coronavirus-2: A Critical Review of Virus Biology, Genome and Pathophysiology. Open Dent J 2021. [DOI: 10.2174/1874210602115010286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Severe Acute Respiratory Coronavirus-2 [SARS-CoV-2] emerged as a great threat to the world at the end of December 2019 in China. The SARS-CoV-2 evolved from a virus responsible for the SARS epidemic in 2002. The SARS-CoV-2 has a high rate of human-human transmission and originated from the bat. It has a close resemblance with bat-like-SARS-CoV compared to SARS-CoV; however, the Spike protein responsible for virus-host cell interaction possesses the least similarity with that of SARS-CoV. Cytokine Storm is associated with the severity of Covid-19 and leads to acute respiratory distress syndrome [ARDS] and/or multiple organ dysfunction syndromes [MODS]. In the current review article, the features of a novel coronavirus, including viral biology, genomic organisation, life cycle, pathophysiology and genetic diversity, have been discussed. The development of policies and plans which can prepare the world for future pandemics has also been proposed. In addition, the drug development pipelines, diagnostic facilities and management of such pandemics need an up-gradation to contain the current as well as future outbreaks.
Collapse
|
34
|
Shivaprakash KN, Sen S, Paul S, Kiesecker JM, Bawa KS. Mammals, wildlife trade, and the next global pandemic. Curr Biol 2021; 31:3671-3677.e3. [PMID: 34237267 DOI: 10.1016/j.cub.2021.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/09/2021] [Accepted: 06/02/2021] [Indexed: 12/23/2022]
Abstract
Most new infectious diseases emerge when pathogens transfer from animals to humans.1,2 The suspected origin of the COVID pandemic in a wildlife wet market has resurfaced debates on the role of wildlife trade as a potential source of emerging zoonotic diseases.3-5 Yet there are no studies quantitatively assessing zoonotic disease risk associated with wildlife trade. Combining data on mammal species hosting zoonotic viruses and mammals known to be in current and future wildlife trade,6 we found that one-quarter (26.5%) of the mammals in wildlife trade harbor 75% of known zoonotic viruses, a level much higher than domesticated and non-traded mammals. The traded mammals also harbor distinct compositions of zoonotic viruses and different host reservoirs from non-traded and domesticated mammals. Furthermore, we highlight that primates, ungulates, carnivores, and bats represent significant zoonotic disease risks as they host 132 (58%) of 226 known zoonotic viruses in present wildlife trade, whereas species of bats, rodents, and marsupials represent significant zoonotic disease risks in future wildlife trade. Thus, the risk of carrying zoonotic diseases is not equal for all mammal species in wildlife trade. Overall, our findings strengthen the evidence that wildlife trade and zoonotic disease risks are strongly associated, and that mitigation measures should prioritize species with the highest risk of carrying zoonotic viruses. Curbing the sales of wildlife products and developing principles that support the sustainable and healthy trade of wildlife could be cost-effective investments given the potential risk and consequences of zoonotic outbreaks.
Collapse
Affiliation(s)
| | - Sandeep Sen
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Sriramapura, Jakkur Post, Bangalore, Karnataka 560064, India
| | - Seema Paul
- The Nature Conservancy Center, Lajpat Nagar III, New Delhi 110024, India
| | - Joseph M Kiesecker
- Global Lands Program, The Nature Conservancy, Fort Collins, CO 80524, USA
| | - Kamaljit S Bawa
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Sriramapura, Jakkur Post, Bangalore, Karnataka 560064, India; Department of Biology, University of Massachusetts, 100 Morrissey Boulevard, Boston, MA 02125, USA
| |
Collapse
|
35
|
Mu Y, Shao M, Zhong B, Zhao Y, Leung KMY, Giesy JP, Ma J, Wu F, Zeng F. Transmission of SARS-CoV-2 virus and ambient temperature: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37051-37059. [PMID: 34053039 PMCID: PMC8164483 DOI: 10.1007/s11356-021-14625-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has brought unprecedented public health, and social and economic challenges. It remains unclear whether seasonal changes in ambient temperature will alter spreading trajectory of the COVID-19 epidemic. The probable mechanism on this is still lacking. This review summarizes the most recent research data on the effect of ambient temperature on the COVID-19 epidemic characteristic. The available data suggest that (i) mesophilic traits of viruses are different due to their molecular composition; (ii) increasing ambient temperature decreases the persistence of some viruses in aquatic media; (iii) a 1°C increase in the average monthly minimum ambient temperatures (AMMAT) was related to a 0.72% fewer mammalian individuals that would be infected by coronavirus; (iv) proportion of zoonotic viruses of mammals including humans is probably related to their body temperature difference; (v) seasonal divergence between the northern and southern hemispheres may be a significant driver in determining a waved trajectory in the next 2 years. Further research is needed to understand its effects and mechanisms of global temperature change so that effective strategies can be adopted to curb its natural effects. This paper mainly explores possible scientific hypothesis and evidences that local communities and authorities should consider to find optimal solutions that can limit the transmission of SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Yunsong Mu
- School of Environment & Natural Resources, Renmin University of China, No.59, Zhongguancun Street, Haidian District, Beijing, 100872, China.
| | - Meichen Shao
- School of Environment & Natural Resources, Renmin University of China, No.59, Zhongguancun Street, Haidian District, Beijing, 100872, China
| | - Buqing Zhong
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yiqun Zhao
- School of Environment & Natural Resources, Renmin University of China, No.59, Zhongguancun Street, Haidian District, Beijing, 100872, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Jin Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fangang Zeng
- School of Environment & Natural Resources, Renmin University of China, No.59, Zhongguancun Street, Haidian District, Beijing, 100872, China.
| |
Collapse
|
36
|
Li Z, Jiang J, Ruan X, Tong Y, Xu S, Han L, Xu J. The zoonotic and natural foci characteristics of SARS-CoV-2. JOURNAL OF BIOSAFETY AND BIOSECURITY 2021; 3:51-55. [PMID: 34189426 PMCID: PMC8221912 DOI: 10.1016/j.jobb.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/26/2022] Open
Abstract
The origin of SARS-CoV-2 is still an unresolved mystery. In this study, we systematically reviewed the main research progress of wild animals carrying virus highly homologous to SARS-CoV-2 and analyzed the natural foci characteristics of SARS-CoV-2. The complexity of SARS-CoV-2 origin in wild animals and the possibility of SARS-CoV-2 long-term existence in human populations are also discussed. The joint investigation of corona virus carried by wildlife, as well as the ecology and patho-ecology of bats and other wildlife, are key measures to further clarify the characteristics of natural foci of SARS-CoV-2 and actively defend against future outbreaks of emerging zoonotic diseases.
Collapse
Affiliation(s)
- Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Jiafu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Xiangdong Ruan
- Academy of Forest Inventory and Planning, State Forestry and Grassland Administration, Beijing 100714, PR China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Shuai Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Lichao Han
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| |
Collapse
|
37
|
Muzeniek T, Perera T, Siriwardana S, Bas D, Kaplan F, Öruc M, Becker-Ziaja B, Schwarz F, Premawansa G, Premawansa S, Perera I, Yapa W, Nitsche A, Kohl C. Detection of Alpha- and Betacoronaviruses in Miniopterus fuliginosus and Rousettus leschenaultii, two species of Sri Lankan Bats. Vaccines (Basel) 2021; 9:vaccines9060650. [PMID: 34203592 PMCID: PMC8232336 DOI: 10.3390/vaccines9060650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022] Open
Abstract
Bats are known to be potential reservoirs of numerous human-pathogenic viruses. They have been identified as natural hosts for coronaviruses, causing Severe Acute Respiratory Syndrome (SARS) in humans. Since the emergence of SARS-CoV-2 in 2019 interest in the prevalence of coronaviruses in bats was newly raised. In this study we investigated different bat species living in a sympatric colony in the Wavul Galge cave (Koslanda, Sri Lanka). In three field sessions (in 2018 and 2019), 395 bats were captured (Miniopterus, Rousettus, Hipposideros and Rhinolophus spp.) and either rectal swabs or fecal samples were collected. From these overall 396 rectal swab and fecal samples, the screening for coronaviruses with nested PCR resulted in 33 positive samples, 31 of which originated from Miniopterus fuliginosus and two from Rousettus leschenaultii. Sanger sequencing and phylogenetic analysis of the obtained 384-nt fragment of the RNA-dependent RNA polymerase revealed that the examined M. fuliginosus bats excrete alphacoronaviruses and the examined R. leschenaultii bats excrete betacoronaviruses. Despite the sympatric roosting habitat, the coronaviruses showed host specificity and seemed to be limited to one species. Our results represent an important basis to better understand the prevalence of coronaviruses in Sri Lankan bats and may provide a basis for pursuing studies on particular bat species of interest.
Collapse
Affiliation(s)
- Therese Muzeniek
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
| | - Thejanee Perera
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka;
| | - Sahan Siriwardana
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo 00300, Sri Lanka; (S.S.); (S.P.); (I.P.); (W.Y.)
| | - Dilara Bas
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
| | - Fatimanur Kaplan
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
| | - Mizgin Öruc
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
| | - Beate Becker-Ziaja
- Robert Koch Institute, Centre for International Health Protection, Public Health Laboratory Support (ZIG 4), 13353 Berlin, Germany;
| | - Franziska Schwarz
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
| | | | - Sunil Premawansa
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo 00300, Sri Lanka; (S.S.); (S.P.); (I.P.); (W.Y.)
| | - Inoka Perera
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo 00300, Sri Lanka; (S.S.); (S.P.); (I.P.); (W.Y.)
| | - Wipula Yapa
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo 00300, Sri Lanka; (S.S.); (S.P.); (I.P.); (W.Y.)
| | - Andreas Nitsche
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
| | - Claudia Kohl
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
- Correspondence: ; Tel.: +49-30-187-542-144
| |
Collapse
|
38
|
McEvoy JF, Kishbaugh JC, Valitutto MT, Aung O, Tun KYN, Win YT, Maw MT, Thein WZ, Win HH, Chit AM, Vodzak ME, Murray S. Movements of Indian Flying Fox in Myanmar as a Guide to Human-Bat Interface Sites. ECOHEALTH 2021; 18:204-216. [PMID: 34448977 PMCID: PMC8390844 DOI: 10.1007/s10393-021-01544-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 03/31/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Frugivorous bats play a vital role in tropical ecosystems as pollinators and seed dispersers but are also important vectors of zoonotic diseases. Myanmar sits at the intersection of numerous bioregions and contains habitats that are important for many endangered and endemic species. This rapidly developing country also forms a connection between hotspots of emerging human diseases. We deployed Global Positioning System collars to track the movements of 10 Indian flying fox (Pteropus giganteus) in the agricultural landscapes of central Myanmar. We used clustering analysis to identify foraging sites and high-utilization areas. As part of a larger viral surveillance study in bats of Myanmar, we also collected oral and rectal swab samples from 29 bats to test for key emerging viral diseases in this colony. There were no positive results detected for our chosen viruses. We analyzed their foraging movement behavior and evaluated selected foraging sites for their potential as human-wildlife interface sites.
Collapse
Affiliation(s)
- John F McEvoy
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA.
| | - Jennifer C Kishbaugh
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Marc T Valitutto
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Ohnmar Aung
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Kyaw Yan Naing Tun
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock, and Irrigation, Yangon, Myanmar
| | - Ye Tun Win
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock, and Irrigation, Yangon, Myanmar
| | - Min Thein Maw
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock, and Irrigation, Yangon, Myanmar
| | - Wai Zin Thein
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock, and Irrigation, Yangon, Myanmar
| | - Htay Htay Win
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock, and Irrigation, Yangon, Myanmar
| | - Aung Myo Chit
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Megan E Vodzak
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Suzan Murray
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| |
Collapse
|
39
|
Beeckmans S, Van Driessche E. Scrutinizing Coronaviruses Using Publicly Available Bioinformatic Tools: The Viral Structural Proteins as a Case Study. Front Mol Biosci 2021; 8:671923. [PMID: 34109214 PMCID: PMC8181738 DOI: 10.3389/fmolb.2021.671923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 01/18/2023] Open
Abstract
Since early 2020, the world suffers from a new beta-coronavirus, called SARS-CoV-2, that has devastating effects globally due to its associated disease, Covid-19. Until today, Covid-19, which not only causes life-threatening lung infections but also impairs various other organs and tissues, has killed hundreds of thousands of people and caused irreparable damage to many others. Since the very onset of the pandemic, huge efforts were made worldwide to fully understand this virus and numerous studies were, and still are, published. Many of these deal with structural analyses of the viral spike glycoprotein and with vaccine development, antibodies and antiviral molecules or immunomodulators that are assumed to become essential tools in the struggle against the virus. This paper summarizes knowledge on the properties of the four structural proteins (spike protein S, membrane protein M, envelope protein E and nucleocapsid protein N) of the SARS-CoV-2 virus and its relatives, SARS-CoV and MERS-CoV, that emerged few years earlier. Moreover, attention is paid to ways to analyze such proteins using freely available bioinformatic tools and, more importantly, to bring these proteins alive by looking at them on a computer/laptop screen with the easy-to-use but highly performant and interactive molecular graphics program DeepView. It is hoped that this paper will stimulate non-bioinformaticians and non-specialists in structural biology to scrutinize these and other macromolecules and as such will contribute to establishing procedures to fight these and maybe other forthcoming viruses.
Collapse
Affiliation(s)
- Sonia Beeckmans
- Research Unit Protein Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | | |
Collapse
|
40
|
Ecology and Evolution of Betacoronaviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:41-60. [PMID: 33973171 DOI: 10.1007/978-3-030-63761-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The crown-like outline of the virions of coronaviruses will long endure as the iconic image of 2020 - the year of the COVID-19 pandemic. This major human health emergency has been caused by a betacoronavirus, as have others in the past. In this chapter, we outline the taxonomy of betacoronaviruses and their properties, both genetic and biological. We discuss their recombinational and mutational histories separately to show that the sequence of the RaTG13 bat virus isolate is the closest currently known full-length genetic homolog of that of the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). However, the RaTG13 bat virus and SARS-CoV-2 have probably diverged over 20 years. We discuss the ecology of their pangolin and bat hosts and conclude that, like other recent viral pandemics, the underlying cause of the SARS-CoV-2 emergence is probably the relentless growth of the world's human population and the overexploitation and disturbance of the environment.
Collapse
|
41
|
Keatts LO, Robards M, Olson SH, Hueffer K, Insley SJ, Joly DO, Kutz S, Lee DS, Chetkiewicz CLB, Lair S, Preston ND, Pruvot M, Ray JC, Reid D, Sleeman JM, Stimmelmayr R, Stephen C, Walzer C. Implications of Zoonoses From Hunting and Use of Wildlife in North American Arctic and Boreal Biomes: Pandemic Potential, Monitoring, and Mitigation. Front Public Health 2021; 9:627654. [PMID: 34026707 PMCID: PMC8131663 DOI: 10.3389/fpubh.2021.627654] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
The COVID-19 pandemic has re-focused attention on mechanisms that lead to zoonotic disease spillover and spread. Commercial wildlife trade, and associated markets, are recognized mechanisms for zoonotic disease emergence, resulting in a growing global conversation around reducing human disease risks from spillover associated with hunting, trade, and consumption of wild animals. These discussions are especially relevant to people who rely on harvesting wildlife to meet nutritional, and cultural needs, including those in Arctic and boreal regions. Global policies around wildlife use and trade can impact food sovereignty and security, especially of Indigenous Peoples. We reviewed known zoonotic pathogens and current risks of transmission from wildlife (including fish) to humans in North American Arctic and boreal biomes, and evaluated the epidemic and pandemic potential of these zoonoses. We discuss future concerns, and consider monitoring and mitigation measures in these changing socio-ecological systems. While multiple zoonotic pathogens circulate in these systems, risks to humans are mostly limited to individual illness or local community outbreaks. These regions are relatively remote, subject to very cold temperatures, have relatively low wildlife, domestic animal, and pathogen diversity, and in many cases low density, including of humans. Hence, favorable conditions for emergence of novel diseases or major amplification of a spillover event are currently not present. The greatest risk to northern communities from pathogens of pandemic potential is via introduction with humans visiting from other areas. However, Arctic and boreal ecosystems are undergoing rapid changes through climate warming, habitat encroachment, and development; all of which can change host and pathogen relationships, thereby affecting the probability of the emergence of new (and re-emergence of old) zoonoses. Indigenous leadership and engagement in disease monitoring, prevention and response, is vital from the outset, and would increase the success of such efforts, as well as ensure the protection of Indigenous rights as outlined in the United Nations Declaration on the Rights of Indigenous Peoples. Partnering with northern communities and including Indigenous Knowledge Systems would improve the timeliness, and likelihood, of detecting emerging zoonotic risks, and contextualize risk assessments to the unique human-wildlife relationships present in northern biomes.
Collapse
Affiliation(s)
- Lucy O. Keatts
- Wildlife Conservation Society Health Program, Bronx, NY, United States
| | - Martin Robards
- Wildlife Conservation Society, Arctic Beringia Program, Fairbanks, AK, United States
| | - Sarah H. Olson
- Wildlife Conservation Society Health Program, Bronx, NY, United States
| | - Karsten Hueffer
- Department of Veterinary Medicine & Arctic and Northern Studies Program, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Stephen J. Insley
- Wildlife Conservation Society Canada, Toronto, ON, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Susan Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - David S. Lee
- Department of Wildlife and Environment, Nunavut Tunngavik Inc., Ottawa, ON, Canada
| | | | - Stéphane Lair
- Canadian Wildlife Health Cooperative, Université de Montréal, Montreal, QC, Canada
| | | | - Mathieu Pruvot
- Wildlife Conservation Society Health Program, Bronx, NY, United States
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Justina C. Ray
- Wildlife Conservation Society Canada, Toronto, ON, Canada
| | - Donald Reid
- Wildlife Conservation Society Canada, Toronto, ON, Canada
| | - Jonathan M. Sleeman
- United States Geological Survey National Wildlife Health Center, Madison, WI, United States
| | - Raphaela Stimmelmayr
- North Slope Department of Wildlife Management, Utqiagvik, AK, United States
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Craig Stephen
- University of British Columbia, Vancouver, BC, Canada
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Chris Walzer
- Wildlife Conservation Society Health Program, Bronx, NY, United States
- Conservation Medicine Unit, Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
42
|
Prakash S, Srivastava R, Coulon PG, Dhanushkodi NR, Chentoufi AA, Tifrea DF, Edwards RA, Figueroa CJ, Schubl SD, Hsieh L, Buchmeier MJ, Bouziane M, Nesburn AB, Kuppermann BD, BenMohamed L. Genome-Wide B Cell, CD4 +, and CD8 + T Cell Epitopes That Are Highly Conserved between Human and Animal Coronaviruses, Identified from SARS-CoV-2 as Targets for Preemptive Pan-Coronavirus Vaccines. THE JOURNAL OF IMMUNOLOGY 2021; 206:2566-2582. [PMID: 33911008 DOI: 10.4049/jimmunol.2001438] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
Over the last two decades, there have been three deadly human outbreaks of coronaviruses (CoVs) caused by SARS-CoV, MERS-CoV, and SARS-CoV-2, which has caused the current COVID-19 global pandemic. All three deadly CoVs originated from bats and transmitted to humans via various intermediate animal reservoirs. It remains highly possible that other global COVID pandemics will emerge in the coming years caused by yet another spillover of a bat-derived SARS-like coronavirus (SL-CoV) into humans. Determining the Ag and the human B cells, CD4+ and CD8+ T cell epitope landscapes that are conserved among human and animal coronaviruses should inform in the development of future pan-coronavirus vaccines. In the current study, using several immunoinformatics and sequence alignment approaches, we identified several human B cell and CD4+ and CD8+ T cell epitopes that are highly conserved in 1) greater than 81,000 SARS-CoV-2 genome sequences identified in 190 countries on six continents; 2) six circulating CoVs that caused previous human outbreaks of the common cold; 3) nine SL-CoVs isolated from bats; 4) nine SL-CoV isolated from pangolins; 5) three SL-CoVs isolated from civet cats; and 6) four MERS strains isolated from camels. Furthermore, the identified epitopes: 1) recalled B cells and CD4+ and CD8+ T cells from both COVID-19 patients and healthy individuals who were never exposed to SARS-CoV-2, and 2) induced strong B cell and T cell responses in humanized HLA-DR1/HLA-A*02:01 double-transgenic mice. The findings pave the way to develop a preemptive multiepitope pan-coronavirus vaccine to protect against past, current, and future outbreaks.
Collapse
Affiliation(s)
- Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA
| | - Pierre-Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA
| | - Nisha R Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA
| | - Aziz A Chentoufi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA
| | - Delia F Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA
| | - Cesar J Figueroa
- Division of Trauma, Burns, Critical Care, and Acute Care Surgery, Department of Surgery, School of Medicine, University of California Irvine, Irvine, CA
| | - Sebastian D Schubl
- Division of Trauma, Burns, Critical Care, and Acute Care Surgery, Department of Surgery, School of Medicine, University of California Irvine, Irvine, CA
| | - Lanny Hsieh
- Division of Infectious Diseases and Hospitalist Program, Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA
| | - Michael J Buchmeier
- Center for Virus Research, Division of Infectious Disease, School of Medicine, University of California Irvine, Irvine, CA
| | | | - Anthony B Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA
| | - Baruch D Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA; .,Center for Virus Research, Division of Infectious Disease, School of Medicine, University of California Irvine, Irvine, CA.,Institute for Immunology, School of Medicine, University of California Irvine, Irvine, CA
| |
Collapse
|
43
|
Benzigar MR, Bhattacharjee R, Baharfar M, Liu G. Current methods for diagnosis of human coronaviruses: pros and cons. Anal Bioanal Chem 2021; 413:2311-2330. [PMID: 33219449 PMCID: PMC7679240 DOI: 10.1007/s00216-020-03046-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/14/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
The current global fight against coronavirus disease (COVID-19) to flatten the transmission curve is put forth by the World Health Organization (WHO) as there is no immediate diagnosis or cure for COVID-19 so far. In order to stop the spread, researchers worldwide are working around the clock aiming to develop reliable tools for early diagnosis of severe acute respiratory syndrome (SARS-CoV-2) understanding the infection path and mechanisms. Currently, nucleic acid-based molecular diagnosis (real-time reverse transcription polymerase chain reaction (RT-PCR) test) is considered the gold standard for early diagnosis of SARS-CoV-2. Antibody-based serology detection is ineffective for the purpose of early diagnosis, but a potential tool for serosurveys, providing people with immune certificates for clearance from COVID-19 infection. Meanwhile, there are various blooming methods developed these days. In this review, we summarise different types of coronavirus discovered which can be transmitted between human beings. Methods used for diagnosis of the discovered human coronavirus (SARS, MERS, COVID-19) including nucleic acid detection, gene sequencing, antibody detection, antigen detection, and clinical diagnosis are presented. Their merits, demerits and prospects are discussed which can help the researchers to develop new generation of advanced diagnostic tools for accurate and effective control of human coronavirus transmission in the communities and hospitals.
Collapse
Affiliation(s)
- Mercy R Benzigar
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ripon Bhattacharjee
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mahroo Baharfar
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
44
|
Mohsin H, Asif A, Fatima M, Rehman Y. Potential role of viral metagenomics as a surveillance tool for the early detection of emerging novel pathogens. Arch Microbiol 2021; 203:865-872. [PMID: 33175192 PMCID: PMC7656497 DOI: 10.1007/s00203-020-02105-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022]
Abstract
Since the early times, human beings have always been faced with deadly microbial infections, both bacterial and viral. Pathogens such as viruses are always evolving owing to the processes of antigenic shift and drift. Such viral evolution results in the emergence of new types and serovars that prove deadly for humans-like influenza pandemics, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). The pandemic of novel coronavirus SARS-CoV-2 is the recent example. It has resulted in a great loss of human lives and a serious burden on economy across the globe. To counter such situations, a system should exist for the early detection of emerging viral pathogens. This will help prevent possible outbreaks and save human lives. Most of such deadly novel viruses and viral outbreaks are known to be originated from animal hosts. Regular monitoring of potential hot spots of such emerging microbes, such as zoos and animal markets, through metagenomics could help assess the presence of new viruses and pathogens. In this review, we focus on the potential of viral metagenomics and propose a surveillance system based on it for the early detection and hence prevention of such emerging viral infections.
Collapse
Affiliation(s)
- Hareem Mohsin
- Department of Allied Health Sciences, Superior University, Lahore, Pakistan
| | - Azka Asif
- Schoool of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Minhaj Fatima
- Learning Resource Center, University of Management and Technology, Lahore, Pakistan
| | - Yasir Rehman
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan.
| |
Collapse
|
45
|
Li L, Wang X, Hua Y, Liu P, Zhou J, Chen J, An F, Hou F, Huang W, Chen J. Epidemiological Study of Betacoronaviruses in Captive Malayan Pangolins. Front Microbiol 2021; 12:657439. [PMID: 33763052 PMCID: PMC7982866 DOI: 10.3389/fmicb.2021.657439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/09/2021] [Indexed: 01/17/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) outbreak has significantly affected international public health safety. It has been reported that the pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, could originate from bats and utilize the Malayan pangolin (Manis javanica) as an intermediate host. To gain further insights into the coronaviruses carried by pangolins, we investigated the occurrence of Betacoronavirus (β-CoV) infections in captive Malayan pangolins in the Guangdong province of China. We detected three β-CoV-positive M. javanica individuals with a positive rate of 6.98% and also detected β-CoV in two dead pangolins sampled in August 2019. The CoV carried by pangolins is a new β-CoV, which is genetically related to SARS-CoV-2. Furthermore, the expression of angiotensin-converting enzyme 2 (ACE2) was detected in eight organs of pangolins, with the highest ACE2 mRNA levels in the kidney, suggesting that these organs could be at a risk of β-CoV infection. These results enable us to better understand the status of β-CoV carried by Malayan pangolins, while providing a theoretical basis for better pangolin protection and viral control.
Collapse
Affiliation(s)
- Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaohu Wang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yan Hua
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Ping Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiabin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jing Chen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fuyu An
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Fanghui Hou
- Guangdong Provincial Wildlife Rescue Center, Guangzhou, China
| | - Wenzhong Huang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
46
|
Dimkić I, Fira D, Janakiev T, Kabić J, Stupar M, Nenadić M, Unković N, Grbić ML. The microbiome of bat guano: for what is this knowledge important? Appl Microbiol Biotechnol 2021; 105:1407-1419. [PMID: 33512572 PMCID: PMC7845282 DOI: 10.1007/s00253-021-11143-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Bats as flying mammals are potent vectors and natural reservoir hosts for many infectious viruses, bacteria, and fungi, also detected in their excreta such as guano. Accelerated deforestation, urbanization, and anthropization hastily lead to overpopulation of the bats in urban areas allowing easy interaction with other animals, expansion, and emergence of new zoonotic disease outbreaks potentially harmful to humans. Therefore, getting new insights in the microbiome of bat guano from different places represents an imperative for the future. Furthermore, the use of novel high-throughput sequencing technologies allows better insight in guano microbiome and potentially indicated that some species could be typical guano-dwelling members. Bats are well known as a natural reservoir of many zoonotic viruses such as Ebola, Nipah, Marburg, lyssaviruses, rabies, henipaviruses, and many coronaviruses which caused a high number of outbreaks including ongoing COVID-19 pandemic. Additionally, many bacterial and fungal pathogens were identified as common guano residents. Thus, the presence of multi-drug-resistant bacteria as environmental reservoirs of extended spectrum β-lactamases and carbapenemase-producing strains has been confirmed. Bat guano is the most suitable substrate for fungal reproduction and dissemination, including pathogenic yeasts and keratinophilic and dimorphic human pathogenic fungi known as notorious causative agents of severe endemic mycoses like histoplasmosis and fatal cryptococcosis, especially deadly in immunocompromised individuals. This review provides an overview of bat guano microbiota diversity and the significance of autochthonous and pathogenic taxa for humans and the environment, highlighting better understanding in preventing emerging diseases. KEY POINTS: Bat guano as reservoir and source for spreading of autochthonous and pathogenic microbiota Bat guano vs. novel zoonotic disease outbreaks Destruction of bat natural habitats urgently demands increased human awareness.
Collapse
Affiliation(s)
- Ivica Dimkić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, 11000, Serbia.
| | - Djordje Fira
- Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, 11000, Serbia
| | - Tamara Janakiev
- Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, 11000, Serbia
| | - Jovana Kabić
- Faculty of Medicine, University of Belgrade, dr Subotića starijeg 1, Belgrade, 11000, Serbia
| | - Miloš Stupar
- Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, 11000, Serbia
| | - Marija Nenadić
- Institute for Biological Research "Siniša Stanković", Bulevar despota Stefana 142, Belgrade, 11060, Serbia
| | - Nikola Unković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, 11000, Serbia
| | | |
Collapse
|
47
|
Dutheil F, Clinchamps M, Bouillon-Minois JB. Bats, Pathogens, and Species Richness. Pathogens 2021; 10:pathogens10020098. [PMID: 33494226 PMCID: PMC7909788 DOI: 10.3390/pathogens10020098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022] Open
Abstract
Bats carry many viruses, but this is not sufficient to threaten humans. Viruses must mutate to generate the ability to transfer to humans. A key factor is the diversity of species. With 1400 species of bats (20% of all species of mammals), the diversity of bats species is highly favorable to the emergence of new viruses. Moreover, several species of bats live within the same location, and share advanced social behavior, favoring the transmission of viruses. Because they fly, bats are also hosts for a wide range of viruses from many environments. They also eat everything (including what humans eat), they share humans’ environment and become closer to domestic species, which can serve as relays between bats and humans. Bats also have a long-life expectancy (up to 40 years for some bats), which is particularly effective for transmission to humans. However, a recent publication came out challenging what we think about bats. Proportionally, bats may not carry a higher number of zoonotic pathogens, normalized by species richness, compared to other mammalian and avian species. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts, without evidence that bats carry more viruses that infect humans.
Collapse
Affiliation(s)
- Frédéric Dutheil
- CNRS, LaPSCo, Physiological and Psychosocial Stress, Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
- Preventive and Occupational Medicine, University Hospital of Clermont-Ferrand, 63000 Clermont-Ferrand, France;
- CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Maëlys Clinchamps
- Preventive and Occupational Medicine, University Hospital of Clermont-Ferrand, 63000 Clermont-Ferrand, France;
| | - Jean-Baptiste Bouillon-Minois
- CNRS, LaPSCo, Physiological and Psychosocial Stress, Emergency Medicine, University Hospital of Clermont-Ferrand, 63000 Clermont-Ferrand, France
- Correspondence:
| |
Collapse
|
48
|
Abstract
Human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is most closely related, by average genetic distance, to two coronaviruses isolated from bats, RaTG13 and RmYN02. However, there is a segment of high amino acid similarity between human SARS-CoV-2 and a pangolin-isolated strain, GD410721, in the receptor-binding domain (RBD) of the spike protein, a pattern that can be caused by either recombination or by convergent amino acid evolution driven by natural selection. We perform a detailed analysis of the synonymous divergence, which is less likely to be affected by selection than amino acid divergence, between human SARS-CoV-2 and related strains. We show that the synonymous divergence between the bat-derived viruses and SARS-CoV-2 is larger than between GD410721 and SARS-CoV-2 in the RBD, providing strong additional support for the recombination hypothesis. However, the synonymous divergence between pangolin strain and SARS-CoV-2 is also relatively high, which is not consistent with a recent recombination between them, instead, it suggests a recombination into RaTG13. We also find a 14-fold increase in the dN /dS ratio from the lineage leading to SARS-CoV-2 to the strains of the current pandemic, suggesting that the vast majority of nonsynonymous mutations currently segregating within the human strains have a negative impact on viral fitness. Finally, we estimate that the time to the most recent common ancestor of SARS-CoV-2 and RaTG13 or RmYN02 based on synonymous divergence is 51.71 years (95% CI, 28.11-75.31) and 37.02 years (95% CI, 18.19-55.85), respectively.
Collapse
Affiliation(s)
- Hongru Wang
- Department of Integrative Biology, UC Berkeley, Berkeley, CA 94707, USA
| | - Lenore Pipes
- Department of Integrative Biology, UC Berkeley, Berkeley, CA 94707, USA
| | - Rasmus Nielsen
- Department of Integrative Biology, UC Berkeley, Berkeley, CA 94707, USA
- Department of Statistics, UC Berkeley, Berkeley, CA 94707, USA
- GLOBE institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark
| |
Collapse
|
49
|
Wacharapluesadee S, Buathong R, Iamsirithawon S, Chaifoo W, Ponpinit T, Ruchisrisarod C, Sonpee C, Katasrila P, Yomrat S, Ghai S, Sirivichayakul S, Okada P, Mekha N, Karnkawinpong O, Uttayamakul S, Vachiraphan A, Plipat T, Hemachudha T. Identification of a Novel Pathogen Using Family-Wide PCR: Initial Confirmation of COVID-19 in Thailand. Front Public Health 2020; 8:555013. [PMID: 33134237 PMCID: PMC7579402 DOI: 10.3389/fpubh.2020.555013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/03/2020] [Indexed: 11/13/2022] Open
Abstract
In resource-limited countries, early detection of novel pathogens is often challenging, due to financial and technical constraints. This study reports the efficacy of family-wide polymerase chain reaction (PCR) in screening, detecting, and identifying initial cases of the novel SARS-CoV-2 in Thailand. Respiratory secretions were collected from suspected individuals traveling from Wuhan, China to Thailand at the beginning of January 2020. Family-wide PCR assays yielded positive results for coronavirus in one traveler within 12 h on January 8, 2020. Nucleotide sequences (290 bp) showed 100% similarity to SARS-CoV-2. The whole genome sequence was further characterized by Next Generation Sequencing (NGS) for confirmation. Combining family-wide PCR, as a rapid screening tool, with NGS, for full genome characterization, could facilitate early detection and confirmation of a novel pathogen and enable early containment of a disease outbreak.
Collapse
Affiliation(s)
- Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn University, Pathumwan, Thailand.,Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rome Buathong
- Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Sopon Iamsirithawon
- Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Walairat Chaifoo
- Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Teerada Ponpinit
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn University, Pathumwan, Thailand.,Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chanida Ruchisrisarod
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn University, Pathumwan, Thailand.,Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chanikarn Sonpee
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn University, Pathumwan, Thailand.,Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Panticha Katasrila
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn University, Pathumwan, Thailand.,Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Siriporn Yomrat
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn University, Pathumwan, Thailand.,Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Siriporn Ghai
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn University, Pathumwan, Thailand.,Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Pilailuk Okada
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Nanthawan Mekha
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Opart Karnkawinpong
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Sumonmal Uttayamakul
- Department of Disease Control, Bamrasnaradura Infectious Disease Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Apichart Vachiraphan
- Department of Disease Control, Bamrasnaradura Infectious Disease Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Tanarak Plipat
- Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Thiravat Hemachudha
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn University, Pathumwan, Thailand.,Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
50
|
Sironi M, Hasnain SE, Rosenthal B, Phan T, Luciani F, Shaw MA, Sallum MA, Mirhashemi ME, Morand S, González-Candelas F. SARS-CoV-2 and COVID-19: A genetic, epidemiological, and evolutionary perspective. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 84:104384. [PMID: 32473976 PMCID: PMC7256558 DOI: 10.1016/j.meegid.2020.104384] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
Abstract
In less than five months, COVID-19 has spread from a small focus in Wuhan, China, to more than 5 million people in almost every country in the world, dominating the concern of most governments and public health systems. The social and political distresses caused by this epidemic will certainly impact our world for a long time to come. Here, we synthesize lessons from a range of scientific perspectives rooted in epidemiology, virology, genetics, ecology and evolutionary biology so as to provide perspective on how this pandemic started, how it is developing, and how best we can stop it.
Collapse
Affiliation(s)
- Manuela Sironi
- Bioinformatics Unit, Scientific Institute IRCCS E. MEDEA, Bosisio Parini (LC), Italy.
| | - Seyed E Hasnain
- JH Institute of Molecular Medicine, Jamia Hamdard, Tughlakabad, New Delhi, India.
| | - Benjamin Rosenthal
- Animal Parasitic Disease Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA.
| | - Tung Phan
- Division of Clinical Microbiology, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Fabio Luciani
- University of New South Wales, Sydney, 2052, New South Wales, Australia.
| | - Marie-Anne Shaw
- Leeds Institute of Medical Research at St James's, School of Medicine, University of Leeds, Leeds, United Kingdom.
| | - M Anice Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil.
| | | | - Serge Morand
- Institute of Evolution Science of Montpellier, Case Courier 064, F-34095 Montpellier, France.
| | - Fernando González-Candelas
- Joint Research Unit Infection and Public Health FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio) and CIBER in Epidemiology and Public Health, Valencia, Spain.
| |
Collapse
|