1
|
Ayala-Hernández LE, Rosales-Muñoz G, Gallegos A, Miranda-Beltrán ML, Macías-Díaz JE. On a deterministic mathematical model which efficiently predicts the protective effect of a plant extract mixture in cirrhotic rats. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:237-252. [PMID: 38303421 DOI: 10.3934/mbe.2024011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
In this work, we propose a mathematical model that describes liver evolution and concentrations of alanine aminotransferase and aspartate aminotransferase in a group of rats damaged with carbon tetrachloride. Carbon tetrachloride was employed to induce cirrhosis. A second groups damaged with carbon tetrachloride was exposed simultaneously a plant extract as hepatoprotective agent. The model reproduces the data obtained in the experiment reported in [Rev. Cub. Plant. Med. 22(1), 2017], and predicts that using the plants extract helps to get a better natural recovery after the treatment. Computer simulations show that the extract reduces the damage velocity but does not avoid it entirely. The present paper is the first report in the literature in which a mathematical model reliably predicts the protective effect of a plant extract mixture in rats with cirrhosis disease. The results reported in this manuscript could be used in the future to help in fighting cirrhotic conditions in humans, though more experimental and mathematical work is required in that case.
Collapse
Affiliation(s)
- Luis E Ayala-Hernández
- Departamento de Ciencias Exactas y Tecnología, Universidad de Guadalajara, Enrique Díaz de León 1144, Paseos de La Montaña, Lagos de Moreno, 47463 Jalisco, Mexico
| | - Gabriela Rosales-Muñoz
- Departamento de Ciencias de la Tierra y de la Vida, Universidad de Guadalajara, Enrique Díaz de León 1144, Paseos de La Montaña, Lagos de Moreno, 47463 Jalisco, Mexico
| | - Armando Gallegos
- Departamento de Ciencias Exactas y Tecnología, Universidad de Guadalajara, Enrique Díaz de León 1144, Paseos de La Montaña, Lagos de Moreno, 47463 Jalisco, Mexico
| | - María L Miranda-Beltrán
- Departamento de Ciencias de la Tierra y de la Vida, Universidad de Guadalajara, Enrique Díaz de León 1144, Paseos de La Montaña, Lagos de Moreno, 47463 Jalisco, Mexico
| | - Jorge E Macías-Díaz
- Department of Mathematics and Didactics of Mathematics, Tallinn University, Narva Rd. 25, Tallinn, 10120 Harjumaa, Estonia
- Departamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria, Aguascalientes, 20100 Aguascalientes, Mexico
| |
Collapse
|
2
|
Cai CL, Marcelino M, Aranda JV, Beharry KD. Comparison of hyperoxia or normoxia resolution of intermittent hypoxia and intermittent hyperoxia episodes on liver histopathology, IGF-1, IGFBP-3, and GHBP in neonatal rats. Growth Horm IGF Res 2023; 72-73:101559. [PMID: 37708588 DOI: 10.1016/j.ghir.2023.101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE Extremely low gestational age neonates requiring oxygen therapy for chronic lung disease experience repeated fluctuations in arterial oxygen saturation, or intermittent hypoxia (IH), during the first few weeks of life. These events are associated with a high risk for reduced growth, hypertension, and insulin resistance in later life. This study tested the hypothesis that IH, or intermittent hyperoxia have similar negative effects on the liver; somatic growth; and liver insulin-like growth factor (IGF)-I, IGF binding protein (BP)-3, and growth hormone binding protein (GHBP), regardless of resolution in normoxia or hyperoxia between episodes. DESIGN Newborn rats on the first day of life (P0) were exposed to two IH paradigms: 1) hyperoxia (50% O2) with brief hypoxia (12% O2); or 2) normoxia (21% O2) with hypoxia (12% O2); intermittent hypoxia (50% O2/21% O2); hyperoxia only (50% O2); or room air (RA, 21% O2). Pups were euthanized on P14 or placed in RA until P21. Controls remained in RA from P0-P21. Growth, liver histopathology, apoptosis, IGFI, IGFBP-3, and GHBP were assessed. RESULTS Pathological findings of the liver hepatocytes, including cellular swelling, steatosis, apoptosis, necrosis and focal sinusoid congestion were seen in the IH and intermittent hyperoxia groups, and were particularly severe in the 21-12% O2 group during exposure (P14) with no significant improvements during recovery/reoxygenation (P21). These effects were associated with induction of HIF1α, and reductions in liver IGFI, IGFBP-3, and GHBP. CONCLUSIONS Exposure to IH or intermittent hyperoxia during the first few weeks of life regardless of resolution in RA or hyperoxia is detrimental to the immature liver. These findings may suggest that interventions to prevent frequent fluctuations in oxygen saturation during early neonatal life remain a high priority.
Collapse
Affiliation(s)
- Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Matthew Marcelino
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA; Department of Ophthalmology; State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA; Department of Ophthalmology; State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
| |
Collapse
|
3
|
Ji S, Lu B, Pan X. A nomogram model to predict the risk of drug-induced liver injury in patients receiving anti-tuberculosis treatment. Front Pharmacol 2023; 14:1153815. [PMID: 37274095 PMCID: PMC10232814 DOI: 10.3389/fphar.2023.1153815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Objectives: To establish an individualized nomogram to predict the probability of drug-induced liver injury (DILI) in tuberculosis patients receiving anti-tuberculosis treatment. Methods: The clinical information of patients admitted to a tertiary hospital between January 2010 and December 2022 was retrospectively reviewed from the clinical records. Patients with baseline liver diseases (hepatis B or C infection and fatty liver) or taking liver protective drugs were excluded. The maximum values in liver function test within 180 days after anti-tuberculosis treatment were collected to determine the occurrence of DILI. The candidate variables used for establishing prediction model in this study were the last results within the 30 days before the treatment onset. The final variables were included after univariate and multivariate logistic regression analyses and applied to establish the nomogram model. The discrimination power and prediction accuracy of the prediction model were assessed using the area under the receiver operating characteristic (AUC) curve and a calibration chart. The clinical effectiveness was assessed via decision curve analysis (DCA). The established model was validated in two validation groups. Results: A total of 1979 patients with 25 variables were enrolled in this study, and the incidence of DILI was 4.2% (n = 83). The patients with complete variables were divided into training group (n = 1,121), validation group I (n = 492) and validation group II (n = 264). Five variables were independent factors for DILI and included in the final prediction model presented as nomogram: age (odds ratio [OR] 1.022, p = 0.023), total bilirubin ≥17.1 μmol/L (OR 11.714, p < 0.001), uric acid (OR 0.977, p = 0.047), neutrophil count (OR 2.145, 0.013) and alcohol consumption (OR 3.209, p = 0.002). The AUCs of the prediction model in the training group, validation group I and validation group II were 0.833, 0.668, and 0.753, respectively. The p-values of calibration charts in the three groups were 0.800, 0.996, and 0.853. The DCA curves of the prediction model were above the two extreme curves. Conclusion: The nomogram model in this study could effectively predict the DILI risk among patients under anti-tuberculosis drug treatment.
Collapse
Affiliation(s)
- Songjun Ji
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Bin Lu
- Department of Infectious Diseases, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Xinling Pan
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| |
Collapse
|
4
|
Dunster JL, Gibbins JM, Nelson MR. Exploring the constituent mechanisms of hepatitis: a dynamical systems approach. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2023; 40:24-48. [PMID: 36197900 PMCID: PMC10009886 DOI: 10.1093/imammb/dqac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022]
Abstract
Hepatitis is the term used to describe inflammation in the liver. It is associated with a high rate of mortality, but the underlying disease mechanisms are not completely understood and treatment options are limited. We present a mathematical model of hepatitis that captures the complex interactions between hepatocytes (liver cells), hepatic stellate cells (cells in the liver that produce hepatitis-associated fibrosis) and the immune components that mediate inflammation. The model is in the form of a system of ordinary differential equations. We use numerical techniques and bifurcation analysis to characterize and elucidate the physiological mechanisms that dominate liver injury and its outcome to a healthy or unhealthy, chronic state. This study reveals the complex interactions between the multiple cell types and mediators involved in this complex disease and highlights potential problems in targeting inflammation in the liver therapeutically.
Collapse
Affiliation(s)
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6AS, UK
| | - Martin R Nelson
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
5
|
Nikolopoulos VK, Augustine R, Camci-Unal G. Harnessing the potential of oxygen-generating materials and their utilization in organ-specific delivery of oxygen. Biomater Sci 2023; 11:1567-1588. [PMID: 36688522 PMCID: PMC10015602 DOI: 10.1039/d2bm01329k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The limited availability of transplantable organs hinders the success of patient treatment through organ transplantation. In addition, there are challenges with immune rejection and the risk of disease transmission when receiving organs from other individuals. Tissue engineering aims to overcome these challenges by generating functional three-dimensional (3D) tissue constructs. When developing tissues or organs of a particular shape, structure, and size as determined by the specific needs of the therapeutic intervention, a tissue specific oxygen supply to all parts of the tissue construct is an utmost requirement. Moreover, the lack of a functional vasculature in engineered tissues decreases cell survival upon implantation in the body. Oxygen-generating materials can alleviate this challenge in engineered tissue constructs by providing oxygen in a sustained and controlled manner. Oxygen-generating materials can be incorporated into 3D scaffolds allowing the cells to receive and utilize oxygen efficiently. In this review, we present an overview of the use of oxygen-generating materials in various tissue engineering applications in an organ specific manner as well as their potential use in the clinic.
Collapse
Affiliation(s)
- Vasilios K Nikolopoulos
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, USA.
| | - Robin Augustine
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, USA.
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
6
|
Ono Y, Sakamoto M, Makino K, Tayama K, Tada Y, Nakagawa Y, Nakajima J, Suzuki J, Suzuki T, Takahashi H, Inomata A, Moriyasu T. Hepatic and renal toxicities and metabolism of fentanyl analogues in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:149-159. [PMID: 36269341 DOI: 10.1007/s00210-022-02301-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/30/2022] [Indexed: 01/29/2023]
Abstract
New synthetic opioids continue to emerge in the illicit market, and among them, fentanyl analogues pose a serious threat to the public health with their abuse and trafficking. We investigated the toxicity of fentanyl analogues on the liver and kidneys mediated by the µ-opioid receptor (MOR). Our study focused on 4-fluoro-isobutyrylfentanyl (4F-iBF), which is classified as a "narcotic" in Japan; structurally similar analogues 4-chloro-isobutyrylfentanyl (4Cl-iBF) and isobutyrylfentanyl (iBF) were also investigated. Rats that were intraperitoneally administered 4F-iBF (5 mg/kg (12.3 μmol/kg)) or iBF (12.3 μmol/kg) displayed hepatic and renal ischemic-like damage, but 4Cl-iBF (12.3 μmol/kg) did milder renal damage only. We found that the agonist activity of 4F-iBF, at MORs was approximately 7.2 times that of 4Cl-iBF, and that pretreatment with MOR antagonist naltrexone (0.8 mg/kg) alleviated liver and kidney injuries caused by 4F-iBF. These results suggested that 4F-iBF might cause ischemic damage to the liver and kidneys, induced by respiratory depression mediated by MORs. Furthermore, to elucidate the metabolism of fentanyl analogues, we investigated the change over time in the amount of 4F-iBF, 4Cl-iBF, iBF (6.15 μmol/kg, respectively), and their respective metabolites in serum after intraperitoneal administration to rats. The results showed that in 24-h post-dose serum, 4Cl-iBF and iBF were substantially eliminated while 4F-iBF remained at about 30% of the maximum level, and each of the N-dephenylethylated metabolites of 4F-iBF, 4Cl-iBF, and iBF was detected in 2-h post-dose serum. The results from this study revealed information on the hepatic and renal toxicities and metabolism related to fentanyl analogues.
Collapse
Affiliation(s)
- Yasushi Ono
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan.
| | - Miho Sakamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Kosho Makino
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shin-machi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Kuniaki Tayama
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Yukie Tada
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Yoshio Nakagawa
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Jun'ichi Nakajima
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Jin Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Toshinari Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Hideyo Takahashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Akiko Inomata
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Takako Moriyasu
- Food Research Laboratory, Tokyo Food Sanitation Association, 1-19-10 Tokumaru, Itabashi-ku, Tokyo, 175-0083, Japan
| |
Collapse
|
7
|
Skrlec I, Talapko J. Hepatitis B and circadian rhythm of the liver. World J Gastroenterol 2022; 28:3282-3296. [PMID: 36158265 PMCID: PMC9346465 DOI: 10.3748/wjg.v28.i27.3282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/15/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm in humans is determined by the central clock located in the hypothalamus’s suprachiasmatic nucleus, and it synchronizes the peripheral clocks in other tissues. Circadian clock genes and clock-controlled genes exist in almost all cell types. They have an essential role in many physiological processes, including lipid metabolism in the liver, regulation of the immune system, and the severity of infections. In addition, circadian rhythm genes can stimulate the immune response of host cells to virus infection. Hepatitis B virus (HBV) infection is the leading cause of liver disease and liver cancer globally. HBV infection depends on the host cell, and hepatocyte circadian rhythm genes are associated with HBV replication, survival, and spread. The core circadian rhythm proteins, REV-ERB and brain and muscle ARNTL-like protein 1, have a crucial role in HBV replication in hepatocytes. In addition to influencing the virus’s life cycle, the circadian rhythm also affects the pharmacokinetics and efficacy of antiviral vaccines. Therefore, it is vital to apply antiviral therapy at the appropriate time of day to reduce toxicity and improve the effectiveness of antiviral treatment. For these reasons, understanding the role of the circadian rhythm in the regulation of HBV infection and host responses to the virus provides us with a new perspective of the interplay of the circadian rhythm and anti-HBV therapy. Therefore, this review emphasizes the importance of the circadian rhythm in HBV infection and the optimization of antiviral treatment based on the circadian rhythm-dependent immune response.
Collapse
Affiliation(s)
- Ivana Skrlec
- Department of Biophysics, Biology, and Chemistry, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Jasminka Talapko
- Department of Anatomy Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health, Osijek 31000, Croatia
| |
Collapse
|
8
|
Lai J, Tang Y, Yang F, Chen J, Huang FH, Yang J, Wang L, Qin D, Law BYK, Wu AG, Wu JM. Targeting autophagy in ethnomedicine against human diseases. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114516. [PMID: 34487846 DOI: 10.1016/j.jep.2021.114516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the past five years, ethnopharmacy-based drugs have been increasingly used in clinical practice. It has been reported that hundreds of ethnopharmacy-based drugs can modulate autophagy to regulate physiological and pathological processes, and ethnomedicines also have certain therapeutic effects on illnesses, revealing the important roles of these medicines in regulating autophagy and treating diseases. AIM OF THE STUDY This study reviews the regulatory effects of natural products on autophagy in recent years, and discusses their pharmacological effects and clinical applications in the process of diseases. It provides a preliminary literature basis and reference for the research of plant drugs in the regulation of autophagy. MATERIALS AND METHODS A comprehensive systematic review in the fields of relationship between autophagy and ethnomedicine in treating diseases from PubMed electronic database was performed. Information was obtained from documentary sources. RESULTS We recorded some illnesses associated with autophagy, then classified them into different categories reasonably. Based on the uses of these substances in different researches of diseases, a total of 80 active ingredients or compound preparations of natural drugs were searched. The autophagy mechanisms of these substances in the treatments of divers diseases have been summarized for the first time, we also looked forward to the clinical application of some of them. CONCLUSIONS Autophagy plays a key function in lots of illnesses, the regulation of autophagy has become one of the important means to prevent and treat these diseases. About 80 compounds and preparations involved in this review have been proved to have therapeutic effects on related diseases through the mechanism of autophagy. Experiments in vivo and in vitro showed that these compounds and preparations could treat these diseases by regulating autophagy. The typical natural products curcumin and tripterine have powerful roles in regulating autophagy and show good and diversified curative effects.
Collapse
Affiliation(s)
- Jia Lai
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yong Tang
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Fei Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Fei-Hong Huang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Jing Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - An-Guo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
| | - Jian-Ming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
9
|
Domiaty DMM. The Role of Pomegranate Peel Extract in Improving Hepatotoxicity, and hMSH2 Expression in CCI 4 -Treated Rats. INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES 2022. [DOI: 10.51847/z3ybdytchk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|