1
|
Pinto LOAD, Silva RC, Bentes LGDB, Bacelar HPHD, Kietzer KS. Low-fidelity simulation models in urology resident's microsurgery training. Acta Cir Bras 2023; 38:e386523. [PMID: 38055400 DOI: 10.1590/acb386523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/15/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE To evaluate the gain of microsurgical skills and competencies by urology residents, using low-fidelity experimental models. METHODS The study involved the use of training boards, together with a low-fidelity microsurgery simulator, developed using a 3D printer. The model consists in two silicone tubes, coated with a resin, measuring 10 cm in length and with internal and external diameters of 0.5 and 1.5 mm. The support for the ducts is composed by a small box, developed with polylactic acid. The evaluation of the gain of skills and competencies in microsurgery occurred throughout a training course consisting of five training sessions. The first sessions (S1-S4) took place at weekly intervals and the last session (S5) was performed three months after S4. During sessions, were analyzed: the speed of performing microsurgical sutures in the pre and post-training and the performance of each resident through the Objective Structure Assessment of Technical Skill (OSATS) and Student Satisfaction Self-Confidence tools in Learning (SSSCL). RESULTS There was a decrease in the time needed to perform the anastomosis (p=0.0019), as well as a progressive increase in the score in the OSATS over during sessions S1 to S4. At S5, there was a slightly decrease in performance (p<0.0001), however, remaining within the expected plateau for the gain of skills and competences. The SSSCL satisfaction scale showed an overall approval rating of 96.9%, with a Cronback alpha coefficient of 83%. CONCLUSIONS The low-fidelity simulation was able to guarantee urology residents a solid gain in skills and competencies in microsurgery.
Collapse
Affiliation(s)
| | - Renata Cunha Silva
- Universidade Estadual do Pará - Department of Morphophysiology Applied to Health - Belém (PA), Brazil
| | | | | | - Kátia Simone Kietzer
- Universidade Estadual do Pará - Department of Morphophysiology Applied to Health - Belém (PA), Brazil
| |
Collapse
|
2
|
Brumpt E, Bertin E, Tatu L, Louvrier A. 3D printing as a pedagogical tool for teaching normal human anatomy: a systematic review. BMC MEDICAL EDUCATION 2023; 23:783. [PMID: 37864193 PMCID: PMC10589929 DOI: 10.1186/s12909-023-04744-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Three-dimensional-printed anatomical models (3DPAMs) appear to be a relevant tool due to their educational value and their feasibility. The objectives of this review were to describe and analyse the methods utilised for creating 3DPAMs used in teaching human anatomy and for evaluating its pedagogical contribution. METHODS An electronic search was conducted on PubMed using the following terms: education, school, learning, teaching, learn, teach, educational, three-dimensional, 3D, 3-dimensional, printing, printed, print, anatomy, anatomical, anatomically, and anatomic. Data retrieved included study characteristics, model design, morphological evaluation, educational performance, advantages, and disadvantages. RESULTS Of the 68 articles selected, the cephalic region was the most studied (33 articles); 51 articles mentioned bone printing. In 47 articles, the 3DPAM was designed from CT scans. Five printing processes were listed. Plastic and its derivatives were used in 48 studies. The cost per design ranged from 1.25 USD to 2800 USD. Thirty-seven studies compared 3DPAM to a reference model. Thirty-three articles investigated educational performance. The main advantages were visual and haptic qualities, effectiveness for teaching, reproducibility, customizability and manipulability, time savings, integration of functional anatomy, better mental rotation ability, knowledge retention, and educator/student satisfaction. The main disadvantages were related to the design: consistency, lack of detail or transparency, overly bright colours, long printing time, and high cost. CONCLUSION This systematic review demonstrates that 3DPAMs are feasible at a low cost and effective for teaching anatomy. More realistic models require access to more expensive 3D printing technologies and substantially longer design time, which would greatly increase the overall cost. Choosing an appropriate image acquisition modality is key. From a pedagogical viewpoint, 3DPAMs are effective tools for teaching anatomy, positively impacting the learning outcomes and satisfaction level. The pedagogical effectiveness of 3DPAMs seems to be best when they reproduce complex anatomical areas, and they are used by students early in their medical studies.
Collapse
Affiliation(s)
- Eléonore Brumpt
- University of Franche-Comté, 19 rue Ambroise Paré, Besançon, 25000, France.
- Radiologie, CHU de Besançon, Besançon, 25000, France.
- Laboratoire Nano Médecine, Imagerie, Thérapeutique, EA 4662, University of Franche-Comté, 16 Route de Gray, Besançon, F-25000, France.
- Anatomy Department, UFR Santé, 19 Rue Ambroise Paré, CS 71806, Besançon, F25030, France.
| | - Eugénie Bertin
- University of Franche-Comté, 19 rue Ambroise Paré, Besançon, 25000, France
- Chirurgie Maxillo-Faciale, Stomatologie Et Odontologie Hospitalière, CHU de Besançon, Besançon, 25000, France
| | - Laurent Tatu
- University of Franche-Comté, 19 rue Ambroise Paré, Besançon, 25000, France
- Neurologie, CHU de Besançon, Besançon, 25000, France
- Laboratoire de Neurosciences Intégratives Et Cliniques, University Franche-Comté, EA 481, Besançon, F-25000, France
| | - Aurélien Louvrier
- University of Franche-Comté, 19 rue Ambroise Paré, Besançon, 25000, France
- Chirurgie Maxillo-Faciale, Stomatologie Et Odontologie Hospitalière, CHU de Besançon, Besançon, 25000, France
- Plateforme I3DM (Impression 3D Médicale), CHU Besançon, Besançon, 25000, France
| |
Collapse
|
3
|
Luxford JC, Cheng TL, Mervis J, Anderson J, Clarke J, Croker S, Nusem E, Bray L, Gunasekera H, Scott KM. An Opportunity to See the Heart Defect Physically: Medical Student Experiences of Technology-Enhanced Learning with 3D Printed Models of Congenital Heart Disease. MEDICAL SCIENCE EDUCATOR 2023; 33:1095-1107. [PMID: 37886275 PMCID: PMC10597946 DOI: 10.1007/s40670-023-01840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 10/28/2023]
Abstract
Three-dimensional (3D) printing is increasingly used in medical education and paediatric cardiology. A technology-enhanced learning (TEL) module was designed to accompany 3D printed models of congenital heart disease (CHD) to aid in the teaching of medical students. There are few studies evaluating the attitudes and perceptions of medical students regarding their experience of learning about CHD using 3D printing. This study aimed to explore senior medical students' experiences in learning about paediatric cardiology through a workshop involving 3D printed models of CHD supported by TEL in the form of online case-based learning. A mixed-methods evaluation was undertaken involving a post-workshop questionnaire (n = 94 students), and focus groups (n = 16 students). Focus group and free-text questionnaire responses underwent thematic analysis. Questionnaire responses demonstrated widespread user satisfaction; 91 (97%) students agreed that the workshop was a valuable experience. The highest-level satisfaction was for the physical 3D printed models, the clinical case-based learning, and opportunity for peer collaboration. Thematic analysis identified five key themes: a variable experience of prior learning, interplay between physical and online models, flexible and novel workshop structure, workshop supported the learning outcomes, and future opportunities for learning using 3D printing. A key novel finding was that students indicated the module increased their confidence to teach others about CHD and recommended expansion to other parts of the curriculum. 3D printed models of CHD are a valuable learning resource and contribute to the richness and enjoyment of medical student learning, with widespread satisfaction. Supplementary Information The online version contains supplementary material available at 10.1007/s40670-023-01840-w.
Collapse
Affiliation(s)
- Jack C. Luxford
- Faculty of Medicine and Health, Children’s Hospital Westmead Clinical School, The University of Sydney, Sydney, NSW Australia
- Heart Centre for Children, The Children’s Hospital at Westmead, Sydney, Australia
| | - Tegan L. Cheng
- Sydney School of Health Sciences, The University of Sydney, Sydney, NSW Australia
- EPIC Lab, The Children’s Hospital at Westmead, Sydney, Australia
| | - Jonathan Mervis
- Heart Centre for Children, The Children’s Hospital at Westmead, Sydney, Australia
| | - Jennifer Anderson
- Faculty of Medicine and Health, Children’s Hospital Westmead Clinical School, The University of Sydney, Sydney, NSW Australia
| | - Jillian Clarke
- Discipline of Medical Imaging, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW Australia
| | - Sarah Croker
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW Australia
| | - Erez Nusem
- School of Architecture, The University of Queensland, Brisbane, QLD Australia
| | - Liam Bray
- Faculty of Architecture, Design and Planning, The University of Sydney, Sydney, NSW Australia
| | - Hasantha Gunasekera
- Faculty of Medicine and Health, Children’s Hospital Westmead Clinical School, The University of Sydney, Sydney, NSW Australia
| | - Karen M. Scott
- Faculty of Medicine and Health, Children’s Hospital Westmead Clinical School, The University of Sydney, Sydney, NSW Australia
| |
Collapse
|
4
|
Dobroś K, Hajto-Bryk J, Zarzecka J. Application of 3D-printed teeth models in teaching dentistry students: A scoping review. EUROPEAN JOURNAL OF DENTAL EDUCATION : OFFICIAL JOURNAL OF THE ASSOCIATION FOR DENTAL EDUCATION IN EUROPE 2023; 27:126-134. [PMID: 35108452 DOI: 10.1111/eje.12784] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 12/29/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Both regular teaching of dentistry students and various training schemes for dentists primarily make use of the series teeth models, resin blocks or extracted teeth, whereas the 3D teeth models may well offer an alternative in this respect. METHODS PubMed and EMBASE were searched in September 2020. Eligibility of the studies was determined on whether they had made use of the 3D-printed teeth models in both pre- and post-graduate education in dentistry. RESULTS The final review embraced 15 studies. There were 659 (89.54%) student participants, and 77 (10.46%) dentists involved in those studies. Five studies addressed the prosthetic and surgical procedures, two-endodontics, one-paediatric dentistry and one-trauma management. The 3D-printed models were also used in the study focused on enhancing the students' manual dexterity, whilst making use of the PhantHome tool. DISCUSSION The 3D-printed teeth models developed for teaching purposes are used in various areas of dentistry. Their overall usefulness in acquiring the necessary hands-on skills for clinical work was acknowledged in all the studies under review, regardless of a specific procedure at issue. The 3D models effectively eliminate the hazard of cross-infection. Overall effectiveness of the soft tissue reproduction appears to be their weakest point indicated to date, especially in the surgical models. CONCLUSIONS The 3D-printed teeth models provide an alternative to the extracted ones, and the series teeth models in regular teaching practice. Participants of the studies under review thoroughly recommend introducing 3D models into any hands-on practice.
Collapse
Affiliation(s)
- Katarzyna Dobroś
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Faculty of Medicine, Jagiellonian University Medical College
| | - Justyna Hajto-Bryk
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Faculty of Medicine, Jagiellonian University Medical College
| | - Joanna Zarzecka
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Faculty of Medicine, Jagiellonian University Medical College
| |
Collapse
|
5
|
Chytas D, Salmas M, Demesticha T, Troupis T. Three-dimensional printing in anatomy education: Is it similarly useful for teaching of all anatomical regions and structures? ANATOMICAL SCIENCES EDUCATION 2023; 16:5-6. [PMID: 35946089 DOI: 10.1002/ase.2216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Dimitrios Chytas
- Basic Sciences Laboratory, Department of Physiotherapy, University of Peloponnese, Sparta, Greece
| | - Marios Salmas
- Department of Anatomy, School of Medicine, Faculty of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Theano Demesticha
- Department of Anatomy, School of Medicine, Faculty of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodore Troupis
- Department of Anatomy, School of Medicine, Faculty of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Ley T. Imagine all you want, but…. J Med Libr Assoc 2022; 110:372-375. [PMID: 36589307 PMCID: PMC9782770 DOI: 10.5195/jmla.2022.1415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
3D printing is an emerging trend in medical care [1]. Medical libraries can play a key role in advancing this new technology [2]. Using a National Library of Medicine (NLM) grant, the medical library was able to purchase a basic 3D printer to create models for patient care and medical education. Despite a slow rollout for the new technology, there was a strong need once word of mouth spread about the new 3D printer. The one-year grant cycle, as well as the following three years, provide supporting evidence that even a basic 3D printer can advance patient care for clinicians and improve medical education for students [3]. The popularity of the technology, clinical support and demand, as well as student interest can drive the program forward on its own and support the medical library's mission to improve community care and create an environment of enhanced learning [1].
Collapse
Affiliation(s)
- Taran Ley
- , Medical Library Director, Southern Illinois University School of Medicine - Medical Library, Springfield, IL
| |
Collapse
|
7
|
Sanghera R, Kotecha S. The Educational Value in the Development and Printing of 3D Medical Models - a Medical Student's Perspective. MEDICAL SCIENCE EDUCATOR 2022; 32:1563-1564. [PMID: 36532393 PMCID: PMC9755412 DOI: 10.1007/s40670-022-01655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Rohan Sanghera
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Sai Kotecha
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Rehman M, Arsenault L, Javan R. Organs in Color: Utilizing Free Software and Emerging Multi Jet Fusion Technology to Color and Surface Label 3D-Printed Anatomical Models. J Digit Imaging 2022; 35:1611-1622. [PMID: 35711071 PMCID: PMC9712840 DOI: 10.1007/s10278-022-00656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/30/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022] Open
Abstract
3D printing (3DP) is a rapidly evolving innovative technology that has already been utilized for the development of educational anatomic models. Until recently, it was difficult and tedious to create multi-colored models and especially labels due to technological constraints. In this technical note, a comprehensive guide for creating labeled and color-coded anatomic models was created using free software, Blender. We have composed a step-by-step process for taking an existing 3D model and adding labeling and color that is compatible with modern high-quality 3D printing technologies (Multi Jet Fusion). We provided colored and labeled 3D renderings of the surface anatomy of the brain, ventricular system of the brain, the segments of the liver, and coronary arteries as examples of the diverse potential of this technology. Additionally, we 3D printed actual models of the surface anatomy of the brain and ventricles of the brain using HP Multi Jet Fusion to demonstrate the potential of this technology in the creation of anatomic models.
Collapse
Affiliation(s)
- Muhammad Rehman
- George Washington University of Health Sciences and School of Medicine, Washington, DC 20037 USA
| | - Lauren Arsenault
- George Washington University of Health Sciences and School of Medicine, Washington, DC 20037 USA
| | - Ramin Javan
- Department of Radiology, George Washington University Hospital, 900 23rd St NW, Suite G2092, Washington, DC 20037 USA
| |
Collapse
|
9
|
Radzi S, Chandrasekaran R, Peh ZK, Rajalingam P, Yeong WY, Mogali SR. Students' learning experiences of three-dimensional printed models and plastinated specimens: a qualitative analysis. BMC MEDICAL EDUCATION 2022; 22:695. [PMID: 36171608 PMCID: PMC9520930 DOI: 10.1186/s12909-022-03756-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Traditional cadaveric dissection is declining whilst plastinated and three-dimensional printed (3DP) models are increasingly popular as substitutes to the conventional anatomy teaching and learning methods. It is unclear about the pros and cons of these new tools and how they impact students' learning experiences of anatomy including humanistic values such as respect, care and empathy. METHODS: Ninety-six students' views were sought immediately after a randomized cross-over study. Pragmatic design was used to investigate the learning experiences of using plastinated and 3DP models of cardiac (in Phase 1, n = 63) and neck (in Phase 2, n = 33) anatomy. Inductive thematic analysis was conducted based on 278 free text comments (related to strengths, weaknesses, things to improve), and focus group (n = 8) transcriptions in full verbatim about learning anatomy with these tools. RESULTS Four themes were found: perceived authenticity, basic understanding versus complexity, attitudes towards respect and care, and multimodality and guidance. CONCLUSIONS Overall, students perceived plastinated specimens as more real and authentic, thus perceived more respect and care than 3DP models; whereas 3DP models were easy to use and prefered for learning basic anatomy.
Collapse
Affiliation(s)
- Shairah Radzi
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Ramya Chandrasekaran
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Zhen Kai Peh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Preman Rajalingam
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University Singapore, Singapore, Singapore
| | - Sreenivasulu Reddy Mogali
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Xu Z, Zhang X, Dou X, Lin C, Wang H, Song S, Yu C, Cui X, Gao X. Flexible endoscopy in the visualization of 3D-printed maxillary sinus and clinical application. Surg Endosc 2022; 36:7827-7838. [PMID: 35882666 PMCID: PMC9485168 DOI: 10.1007/s00464-022-09410-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/19/2022] [Indexed: 11/25/2022]
Abstract
Background During postoperative follow-up, the visible range of maxillary sinus (MS) is limited, even combining 0° and 70° rigid endoscopes together. Flexible endoscope has been used in larynx examinations for a long time, but rarely in nasal cavity and sinus. We aimed to evaluate the application values of rigid and flexible endoscopes for visualization of MS. Methods We followed up 70 patients with lesions in MS via both rigid and flexible endoscopes. In addition, we used thin-slice CT image of the sinus to create a MS model and divided it into two parts for 3D printing. The inner surface of the 3D-printed sinus was marked with grid papers of the same size (5 mm × 5 mm), then the visual range under rigid endoscopes with different angle and flexible endoscopes was calculated and analyzed. Results In clinical follow-up, we found that flexible endoscopy can reach where rigid endoscopy cannot, which is more sensitive than medical imaging. Endoscopes showed the largest observation range of the posterolateral wall, more than half of which can be visualized by 0° endoscope. Almost all of the posterolateral wall can be revealed under 45° endoscope, 70° endoscope and flexible endoscope. The visual range of each wall under flexible endoscope is generally greater than that under rigid endoscopes, especially of the anterior wall, medial wall and inferior wall. Conclusion There was obviously overall advantage of using flexible endoscope in postoperative follow-up of MS lesions. Flexible endoscopy can expand the range of observation, and improve the early detection of the recurrent lesion. We recommend flexible endoscope as a routine application. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00464-022-09410-8.
Collapse
Affiliation(s)
- ZhengRong Xu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Dou
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - ChuanYao Lin
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - HanDong Wang
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - ShengHua Song
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - ChenJie Yu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China. .,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - XinYan Cui
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China. .,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
11
|
Art Design of Ceramic Sculpture Based on 3D Printing Technology and Electrochemistry. J CHEM-NY 2022. [DOI: 10.1155/2022/3190499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In order to solve the artistic design of ceramic sculpture, we proposed a method based on 3D printing technology for ceramic sculpture. First, using ANSYS ICEMCFD simulation software, we verified the effectiveness of the ceramic sculpture design method based on 3D printing technology in this study. Second, the design method of this study is recorded as the experimental group A. The two traditional design methods are recorded as experimental group B and experimental group C, respectively. Finally, we determined and compared the effect, size error, and precision error of the three groups of design methods to design the product. Ceramic sculptures are designed by proving the design method, high pattern definition, and small surface precision error. In the three directions of x-axis, y-axis, and z-axis, the relative size error generated is small, and the error is maintained below 1.0, and the effect of the finished product is consistent. So, the surface roughness of the ceramic sculpture designed this time is low, which will not affect the dimensional accuracy of the ceramic sculpture.
Collapse
|
12
|
Tan L, Wang Z, Jiang H, Han B, Tang J, Kang C, Zhang N, Xu Y. Full color 3D printing of anatomical models. Clin Anat 2022; 35:598-608. [PMID: 35384062 DOI: 10.1002/ca.23875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/20/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION We propose an effective method for manufacturing human anatomical specimens in response to the shortage of cadaver specimens and the poor simulation results of anatomical specimen substitutes. METHODS Digital human data with high precision were used to create digital models and corresponding mapped textures. Different materials were chosen to print the digital models with full-color and multimaterial 3D-printing technology on the basis of the histological characteristics of the anatomical structures. Anatomy experts and surgeons were then invited to compare the 3D printed models with authentic anatomical specimens in terms of morphological appearance, anatomical detail, and textural properties. RESULTS The skull, brain, hand muscles, blood vessels and nerves of the hand, and the deep structure of the head and face were printed. The skull model used hard material, and the brain and hand muscles models used flexible and hard materials combined. The blood vessels, nerves of the hand, and the superficial and deep structure of the head and face used transparent materials, revealing the small vessels and nerves in the interior. In all the models there were no significant differences from anatomical specimens in morphological appearance and anatomical detail. They also affected vision and touch in the same way as authentic specimens in the textural properties of color, roughness, smoothness, and fineness. CONCLUSION Full-color and multi-material 3D printed anatomical models have the same visual and tactile properties as anatomical specimens and could serve to complement or supplement them in anatomy teaching to compensate for the shortage of cadavers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Liwen Tan
- Shandong Digihuman Technology Co., Inc. JiNan, 250100, China
| | - Zengtao Wang
- Hand and Foot Surgery, Shandong Provincial Hospital affiliated to Shandong University, JiNan, China
| | - Hongxin Jiang
- Department of Radiology, the Gucheng Hospital, Hebei, China
| | - Bing Han
- Shandong Digihuman Technology Co., Inc. JiNan, 250100, China
| | - Jing Tang
- Shandong Digihuman Technology Co., Inc. JiNan, 250100, China
| | - Chengfeng Kang
- Shandong Digihuman Technology Co., Inc. JiNan, 250100, China
| | - Na Zhang
- Shandong Digihuman Technology Co., Inc. JiNan, 250100, China
| | - Yifa Xu
- Shandong Digihuman Technology Co., Inc. JiNan, 250100, China
| |
Collapse
|
13
|
Leung G, Pickett AT, Bartellas M, Milin A, Bromwich M, Shorr R, Caulley L. Systematic review and meta-analysis of 3D-printing in otolaryngology education. Int J Pediatr Otorhinolaryngol 2022; 155:111083. [PMID: 35219038 DOI: 10.1016/j.ijporl.2022.111083] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Three-dimensional (3D) printing has received increased attention in recent years and has many applications. In the field of otolaryngology surgery, 3D-printed models have shown potential educational value and a high fidelity to actual tissues. This provides an opportunity for trainees to gain additional exposure, especially as conventional educational tools, such as cadavers, are expensive and in limited supply. The purpose of this study was to perform a meta-analysis of the uses of 3D-printing in otolaryngology education. The primary outcomes of investigation were surgical utility, anatomical similarity, and educational value of 3D-printed models. Secondary outcomes of interest included country of implementation, 3D-printer materials and costs, types of surgical simulators, and the levels of training of participants. METHODS MEDLINE, Embase, Web of Science, Google Scholar and previous reviews were searched from inception until June 2021 for eligible articles. Title, abstract, and data extraction were performed in duplicate. Data were analyzed using random-effects models. The National Institute of Health Quality Assessment Tool was used to rate the quality of the evidence. RESULTS A total of 570 abstracts were identified and screened by 2 independent reviewers. Of the 274 articles reviewed in full text, 46 articles met the study criteria and were included in the meta-analysis. Surgical skill utility was reported in 42 studies (563 participants) and had a high degree of acceptance (84.8%, 95% CI: 81.1%-88.4%). The anatomical similarity was reported in 39 studies (484 participants) and was received positively at 80.6% (95% CI: 77.0%-84.2%). Educational value was described in 36 studies (93 participants) and had the highest approval rating by participants at 90.04% (87.20%-92.88%). A subgroup analysis by year of publication demonstrated that studies published after 2015 had higher ratings across all outcomes compared to those published prior to 2015. CONCLUSION This study found that 3D-printing interventions in otolaryngology demonstrated surgical, anatomical, and educational value. In addition, the approval ratings of 3D-printed models indicate a positive trend over time. Future educational programs may consider implementing 3D-printing on a larger scale within the medical curriculum to enhance exposure to otolaryngology.
Collapse
Affiliation(s)
- Gareth Leung
- University of Ottawa, Faculty of Medicine, Ottawa, Canada.
| | | | | | | | - Matthew Bromwich
- University of Ottawa, Department of Otolaryngology, Ottawa, Canada
| | | | - Lisa Caulley
- University of Ottawa, Department of Otolaryngology, Ottawa, Canada; The Ottawa Hospital, Ottawa, Canada; Ottawa Hospital Research Institute, Department of Clinical Epidemiology, Canada; Erasmus University Medical Center Rotterdam, Department of Epidemiology, Rotterdam, Netherlands
| |
Collapse
|
14
|
Mousa Alnafisah A, Kolarkodi S, Shujaulla S, Gaikwad R, Alharbi F, Aloufi L. Insight of new generation dentists towards the shifting trends of three-dimensional printing for patient management in the Kingdom of Saudi Arabia. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2022; 14:S424-S428. [PMID: 36110807 PMCID: PMC9469352 DOI: 10.4103/jpbs.jpbs_824_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022] Open
Abstract
Background: There is a lack of information in the few studies reporting on the use of three-dimensional (3D) Printing for Patient Management. However, few studies have been found about recent advances in 3D printing technology, and biomaterials are revolutionizing medicine. The purpose of this study is to evaluate the knowledge and attitude of new generation dentist towards 3D printing and its application in various aspects in the field of Prosthodontics. Materials and Methods: A cross-sectional study on dental practitioners/Prosthodontist throughout Saudi Arabia using a self-administered questionnaire, which had items to assess the knowledge attitude and practices of study participants toward the use of 3D printing in dental management. Results: It was observed 17.5% of our participants had complete information and 10.5% had no information about 3D printers in the field of dental medicine. When assessed, male dentists had complete information about 3D printers (17.5%) than females (0%). 43.9% of our participants “strongly agreed” for 3D printers to be implemented in dentistry, 40.4% had “no idea” regarding the experience of 3D prints. Conclusion: Very few dentists have knowledge of 3D printing application in dentistry. Hence we strongly recommend organizing continuing dental education programmed on 3D printing either with hand on workshops, conferences and regular updates on the use of this technology.
Collapse
|
15
|
Bui I, Bhattacharya A, Wong SH, Singh HR, Agarwal A. Role of Three-Dimensional Visualization Modalities in Medical Education. Front Pediatr 2021; 9:760363. [PMID: 34950617 PMCID: PMC8691210 DOI: 10.3389/fped.2021.760363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/25/2021] [Indexed: 01/26/2023] Open
Abstract
For the past two decades, slide-based presentation has been the method of content delivery in medical education. In recent years, other teaching modalities involving three-dimensional (3D) visualization such as 3D printed anatomical models, virtual reality (VR), and augmented reality (AR) have been explored to augment the education experience. This review article will analyze the use of slide-based presentation, 3D printed anatomical models, AR, and VR technologies in medical education, including their benefits and limitations.
Collapse
Affiliation(s)
- Ivy Bui
- Department of Clinical and Applied Sciences Education, School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX, United States
- Children's Hospital of San Antonio, San Antonio, TX, United States
| | - Arunabh Bhattacharya
- Department of Clinical and Applied Sciences Education, School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX, United States
| | - Si Hui Wong
- Children's Hospital of San Antonio, San Antonio, TX, United States
| | - Harinder R. Singh
- Children's Hospital of San Antonio, San Antonio, TX, United States
- Baylor College of Medicine, Houston, TX, United States
| | - Arpit Agarwal
- Children's Hospital of San Antonio, San Antonio, TX, United States
- Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
16
|
Point-of-care manufacturing: a single university hospital's initial experience. 3D Print Med 2021; 7:11. [PMID: 33890198 PMCID: PMC8061881 DOI: 10.1186/s41205-021-00101-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background The integration of 3D printing technology in hospitals is evolving toward production models such as point-of-care manufacturing. This study aims to present the results of the integration of 3D printing technology in a manufacturing university hospital. Methods Observational, descriptive, retrospective, and monocentric study of 907 instances of 3D printing from November 2015 to March 2020. Variables such as product type, utility, time, or manufacturing materials were analyzed. Results Orthopedic Surgery and Traumatology, Oral and Maxillofacial Surgery, and Gynecology and Obstetrics are the medical specialties that have manufactured the largest number of processes. Working and printing time, as well as the amount of printing material, is different for different types of products and input data. The most common printing material was polylactic acid, although biocompatible resin was introduced to produce surgical guides. In addition, the hospital has worked on the co-design of custom-made implants with manufacturing companies and has also participated in tissue bio-printing projects. Conclusions The integration of 3D printing in a university hospital allows identifying the conceptual evolution to “point-of-care manufacturing.”
Collapse
|
17
|
Andrés-Cano P, Calvo-Haro J, Fillat-Gomà F, Andrés-Cano I, Perez-Mañanes R. Role of the orthopaedic surgeon in 3D printing: current applications and legal issues for a personalized medicine. Rev Esp Cir Ortop Traumatol (Engl Ed) 2021. [DOI: 10.1016/j.recote.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
18
|
Andrés-Cano P, Calvo-Haro JA, Fillat-Gomà F, Andrés-Cano I, Perez-Mañanes R. Role of the orthopaedic surgeon in 3D printing: current applications and legal issues for a personalized medicine. Rev Esp Cir Ortop Traumatol (Engl Ed) 2020; 65:138-151. [PMID: 33298378 DOI: 10.1016/j.recot.2020.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/14/2020] [Indexed: 12/16/2022] Open
Abstract
3D printing (I3D) is an additive manufacturing technology with a growing interest in medicine and especially in the specialty of orthopaedic surgery and traumatology. There are numerous applications that add value to the personalised treatment of patients: advanced preoperative planning, surgeries with specific tools for each patient, customised orthotic treatments, personalised implants or prostheses and innovative development in the field of bone and cartilage tissue engineering. This paper provides an update on the role that the orthopaedic surgeon and traumatologist plays as a user and prescriber of this technology and a review of the stages required for the correct integration of I3D into the hospital care flow, from the necessary resources to the current legal recommendations.
Collapse
Affiliation(s)
- P Andrés-Cano
- Departamento de Cirugía Ortopédica y Traumatología, Hospital Universitario Virgen del Rocío, Sevilla, España.
| | - J A Calvo-Haro
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Gregorio Marañón, Madrid, España; Departamento de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, España
| | - F Fillat-Gomà
- Unidad de Planificación Quirúrgica 3D, Departamento de Cirugía Ortopédica y Traumatología, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Barcelona, España
| | - I Andrés-Cano
- Departamento de Radiodiagnóstico Hospital Universitario Puerta del Mar, Cádiz, España
| | - R Perez-Mañanes
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Gregorio Marañón, Madrid, España; Departamento de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, España
| |
Collapse
|