1
|
Hirakawa H, Takita A, Sato Y, Hiramoto S, Hashimoto Y, Ohshima N, Minamishima YA, Murakami M, Tomita H. Inactivation of ackA and pta Genes Reduces GlpT Expression and Susceptibility to Fosfomycin in Escherichia coli. Microbiol Spectr 2023; 11:e0506922. [PMID: 37199605 PMCID: PMC10269713 DOI: 10.1128/spectrum.05069-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/29/2023] [Indexed: 05/19/2023] Open
Abstract
Fosfomycin is used to treat a variety of bacterial infections, including urinary tract infections caused by Escherichia coli. In recent years, quinolone-resistant and extended-spectrum β-lactamase (ESBL)-producing bacteria have been increasing. Because fosfomycin is effective against many of these drug-resistant bacteria, the clinical importance of fosfomycin is increasing. Against this background, information on the mechanisms of resistance and the antimicrobial activity of this drug is desired to enhance the usefulness of fosfomycin therapy. In this study, we aimed to explore novel factors affecting the antimicrobial activity of fosfomycin. Here, we found that ackA and pta contribute to fosfomycin activity against E. coli. ackA and pta mutant E. coli had reduced fosfomycin uptake capacity and became less sensitive to this drug. In addition, ackA and pta mutants had decreased expression of glpT that encodes one of the fosfomycin transporters. Expression of glpT is enhanced by a nucleoid-associated protein, Fis. We found that mutations in ackA and pta also caused a decrease in fis expression. Thus, we interpret the decrease in glpT expression in ackA and pta defective strains to be due to a decrease in Fis levels in these mutants. Furthermore, ackA and pta are conserved in multidrug-resistant E. coli isolated from patients with pyelonephritis and enterohemorrhagic E. coli, and deletion of ackA and pta from these strains resulted in decreased susceptibility to fosfomycin. These results suggest that ackA and pta in E. coli contribute to fosfomycin activity and that mutation of these genes may pose a risk of reducing the effect of fosfomycin. IMPORTANCE The spread of drug-resistant bacteria is a major threat in the field of medicine. Although fosfomycin is an old type of antimicrobial agent, it has recently come back into the limelight because of its effectiveness against many drug-resistant bacteria, including quinolone-resistant and ESBL-producing bacteria. Since fosfomycin is taken up into the bacteria by GlpT and UhpT transporters, its antimicrobial activity fluctuates with changes in GlpT and UhpT function and expression. In this study, we found that inactivation of the ackA and pta genes responsible for the acetic acid metabolism system reduced GlpT expression and fosfomycin activity. In other words, this study shows a new genetic mutation that leads to fosfomycin resistance in bacteria. The results of this study will lead to further understanding of the mechanism of fosfomycin resistance and the creation of new ideas to enhance fosfomycin therapy.
Collapse
Affiliation(s)
- Hidetada Hirakawa
- Department of Bacteriology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Ayako Takita
- Department of Bacteriology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yumika Sato
- Department of Bacteriology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Suguru Hiramoto
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yusuke Hashimoto
- Department of Bacteriology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Noriyasu Ohshima
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yoji A. Minamishima
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Gunma University Graduate School of Medicine, Gunma, Japan
- Laboratory of Bacterial Drug Resistance, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
2
|
Oral Absorbent AST-120 Is Associated with Compositional and Functional Adaptations of Gut Microbiota and Modification of Serum Short and Medium-Chain Fatty Acids in Advanced CKD Patients. Biomedicines 2022; 10:biomedicines10092234. [PMID: 36140334 PMCID: PMC9496242 DOI: 10.3390/biomedicines10092234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/18/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Animal studies have demonstrated that an oral absorbent AST-120 modulates gut environment. However, this phenomenon remains unclear in humans. This study aimed to assess the effects of AST-120 on the gut microbiota, related functional capability and metabolomic profiling in advanced chronic kidney diseases (CKD) patients. Methods: Eight advanced CKD patients with AST-120 (CKD+AST), 24 CKD patients (CKD), and 24 non-CKD controls were enrolled. We analyzed 16S rRNA pyrosequencing of feces and serum metabolomics profiling. Results: The CKD+AST group exhibited dispersed microbial community structure (β-diversity, p < 0.001) compared to other groups. The relative abundances of at least 16 genera were significantly different amongst the three groups. Increases of fatty acids-producing bacteria (Clostridium_sensu_stricto_1, Ruminococcus_2, Eubacterium_nodatum and Phascolarctobacterium) associated with elevated serum acetic acid and octanoic acid levels were found in CKD+AST group. Analysis of microbial gene function indicated that pathway modules relevant to metabolisms of lipids, amino acids and carbohydrates were differentially enriched between CKD+AST and CKD groups. Specifically, enrichments of gene markers of the biosynthesis of fatty acids were noted in the CKD+AST group. Conclusion: Advanced CKD patients exhibited significant gut dysbiosis. AST-120 can partially restore the gut microbiota and intervenes in a possible signature of short- and medium-chain fatty acids metabolism.
Collapse
|
3
|
Jayan H, Pu H, Sun DW. Detection of Bioactive Metabolites in Escherichia Coli Cultures Using Surface-Enhanced Raman Spectroscopy. APPLIED SPECTROSCOPY 2022; 76:812-822. [PMID: 35255717 PMCID: PMC9277339 DOI: 10.1177/00037028221079661] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/17/2022] [Indexed: 05/26/2023]
Abstract
Detection of bioactive metabolites produced by bacteria is important for identifying biomarkers for infectious diseases. In this study, a surface-enhanced Raman spectroscopy (SERS)-based technique was developed for the detection of bioactive metabolite indole produced by Escherichia coli (E. coli) in biological media. The use of highly sensitive Au@Ag core-shell nanoparticles resulted in the detection of indole concentration as low as 0.0886 mM in standard solution. The supplementation of growth media with 5 mM of exogenous tryptophan resulted in the production of a maximum yield of indole of 3.139 mM by E. coli O157:H7 at 37 °C. The growth of bacterial cells was reduced from 47.73 × 108 to 1.033 × 106 CFU/mL when the cells were grown in 0 and 10 mM exogenous tryptophan, respectively. The amount of indole in the Luria-Bertani (LB) media had an inverse correlation with the growth of cells, which resulted in a three-log reduction in the colony-forming unit when the indole concentration in the media was 20 times higher than normal. This work demonstrates that SERS is an effective and highly sensitive method for rapid detection of bioactive metabolites in biological matrix.
Collapse
Affiliation(s)
- Heera Jayan
- School of Food Science and
Engineering, South China University of
Technology, Guangzhou, China
- Academy of Contemporary Food
Engineering, South China University of Technology,
Guangzhou Higher Education Mega Center, Guangzhou, China
- Engineering and Technological
Research Centre of Guangdong Province on Intelligent Sensing and Process Control
of Cold Chain Foods, & Guangdong Province Engineering Laboratory for
Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega
Centre, Guangzhou, China
| | - Hongbin Pu
- School of Food Science and
Engineering, South China University of
Technology, Guangzhou, China
- Academy of Contemporary Food
Engineering, South China University of Technology,
Guangzhou Higher Education Mega Center, Guangzhou, China
- Engineering and Technological
Research Centre of Guangdong Province on Intelligent Sensing and Process Control
of Cold Chain Foods, & Guangdong Province Engineering Laboratory for
Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega
Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and
Engineering, South China University of
Technology, Guangzhou, China
- Academy of Contemporary Food
Engineering, South China University of Technology,
Guangzhou Higher Education Mega Center, Guangzhou, China
- Engineering and Technological
Research Centre of Guangdong Province on Intelligent Sensing and Process Control
of Cold Chain Foods, & Guangdong Province Engineering Laboratory for
Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega
Centre, Guangzhou, China
- Food Refrigeration and Computerized
Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National
University of Ireland, Dublin, Ireland
| |
Collapse
|
4
|
Chen Z, Wu S, Zeng Y, Chen Z, Li X, Li J, He L, Chen M. FuZhengHuaYuJiangZhuTongLuoFang Prescription Modulates Gut Microbiota and Gut-Derived Metabolites in UUO Rats. Front Cell Infect Microbiol 2022; 12:837205. [PMID: 35669118 PMCID: PMC9165620 DOI: 10.3389/fcimb.2022.837205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022] Open
Abstract
Background Alteration of intestinal flora and metabolites is closely related to chronic kidney disease (CKD) across early to advanced stages. FuZhengHuaYuJiangZhuTongLuoFang prescription (FZHY) is a Chinese herb that has been proven to effectively treat CKD, but the underlying mechanism is not clear. Methods Rats were subjected to intragastric treatment with FZHY 7, 14, and 21 days after unilateral ureteral obstruction (UUO) surgery, and kidney tissue, colon tissue, serum, and stool samples were collected. Results FZHY treatment effectively ameliorated UUO-induced renal function loss, renal injury and renal fibrosis, and colon tissue damage and fibrosis on day 7. The results of 16S flora analysis (day 7) showed that, compared with the UUO group, both the FZHY group and the sham group showed decreased levels of g_Monoglobus, g_Papillibacter, g_Eubacterium_nodatum, and g_Family_XIII_AD3011. Additionally, FZHY obviously induced the reduction of serum citrulline, glycoursodeoxycholic acid, 23-nordeoxycholic acid, 7-ketodeoxycholic acid, kahweol, lipoid B4, 4-(3,4-dihydro-2H-1,5-benzodioxepin-7-yl)-2-methyl-1,3-thiazole, taurolithocholic acid sodium salt, indoline-2-carboxylic acid, 5(S),15(S)-diHETE, and others and the increase of bilirubin, asparagine, and others, which were positively associated with the above four candidate bacteria. Moreover, FZHY increased the levels of ZO-1, occludin, and claudin-1 in the colonic mucosa and reduced the levels of CRP, TNF-α, IL-6, and IL-1 in the serum and LN, FN, Col-I, and Col-III in the tubulointerstitium of UUO rats on day 7. Conclusion Our study revealed that FZHY reduced kidney damage at the early stage of CKD by regulating the above four candidate bacteria biomarkers and gut-derived harmful metabolites, inhibiting the inflammation response and tubulointerstitial fibrosis, providing deep insight into CKD therapeutic strategy.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of Nephrology, Affiliated Integrated Traditional Chinese Medicine (TCM) and Western Medicine Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Integrated Traditional Chinese Medicine (TCM) and Western Medicine Hospital, Chengdu First People's Hospital, Chengdu, China
| | - Shaobo Wu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Zeng
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zejun Chen
- Department of Nephrology, Affiliated Integrated Traditional Chinese Medicine (TCM) and Western Medicine Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Integrated Traditional Chinese Medicine (TCM) and Western Medicine Hospital, Chengdu First People's Hospital, Chengdu, China
| | - Xueying Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Long He
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Chen
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Hirakawa H, Suzue K, Uchida M, Takita A, Kamitani W, Tomita H. A Macroporous Magnesium Oxide-Templated Carbon Adsorbs Shiga Toxins and Type III Secretory Proteins in Enterohemorrhagic Escherichia coli, Which Attenuates Virulence. Front Microbiol 2022; 13:883689. [PMID: 35602086 PMCID: PMC9120352 DOI: 10.3389/fmicb.2022.883689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is one of the most common foodborne pathogens. However, no drug that prevents the severe complications caused by this bacterium has been approved yet. This study showed that a macroporous magnesium oxide (MgO)-templated carbon material (MgOC150) adsorbs Shiga toxins, and Type III secretory EspA/EspB proteins responsible for EHEC pathogenesis, and decreases the extracellular levels of these proteins. On the other hand, this material did not affect the growth of EHEC. Citrobacter rodentium traditionally used to estimate Type III secretion system-associated virulence in mice is highly virulent. The survival period of infected mice was prolonged when MgOC150 was administered. This adsorbent disturbed neither mammalian cells nor normal intestinal bacteria, such as Enterococcus hirae, Lactobacillus acidophilus, and Lactobacillus casei. In contrast, MgOC150 adsorbed antimicrobial agents, including β-lactams, quinolones, tetracyclines, and trimethoprim/sulfamethoxazole. However, fosfomycin and amikacin were not adsorbed. Thus, MgOC150 can be used with fosfomycin and amikacin to treat infections. MgOC150 is used for industrial purposes, such as an electrode catalyst, a bioelectrode, and enzyme immobilization. The study proposed another potential application of MgOC150, assisting anti-EHEC chemotherapy.
Collapse
Affiliation(s)
- Hidetada Hirakawa
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Japan
- *Correspondence: Hidetada Hirakawa,
| | - Kazutomo Suzue
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Motoyuki Uchida
- R&D Strategy & Planning Department, Kureha Corporation, Iwaki, Japan
| | - Ayako Takita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Japan
- Laboratory of Bacterial Drug Resistance, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
6
|
Vascular Endothelial Dysfunction in the Thoracic Aorta of Rats with Ischemic Acute Kidney Injury: Contribution of Indoxyl Sulfate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7547269. [PMID: 35251481 PMCID: PMC8896937 DOI: 10.1155/2022/7547269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/21/2022] [Accepted: 02/09/2022] [Indexed: 01/04/2023]
Abstract
Chronic kidney disease (CKD) and cardiovascular disease are known to be linked, and the involvement of indoxyl sulfate (IS), a type of uremic toxin, has been suggested as one of the causes. It is known that IS induces vascular dysfunction through overproduction of reactive oxygen species (ROS). On the other hand, the involvement of IS in the vascular dysfunction associated with acute kidney injury (AKI) is not fully understood. Therefore, we investigated this issue using the thoracic aorta of rats with ischemic AKI. Ischemic AKI was induced by occlusion of the left renal artery and vein for 45 min, followed by reperfusion 2 weeks after contralateral nephrectomy. One day after reperfusion, there was marked deterioration in renal function evidenced by an increase in plasma creatinine. Furthermore, blood IS levels increased markedly due to worsening renal function. Seven days and 28 days after reperfusion, blood IS levels decreased with the improvement in renal function. Of note, acetylcholine-induced vasorelaxation deteriorated over time after reperfusion, contradicting the recovery of renal function. In addition, 28 days after reperfusion, we observed a significant increase in ROS production in the vascular tissue. Next, we administered AST-120, a spherical adsorbent charcoal, after reperfusion to assess whether the vascular endothelial dysfunction associated with the ischemic AKI was due to a temporary increase in blood IS levels. AST-120 reduced the temporary increase in blood IS levels after reperfusion without influencing renal function, but did not restore the impaired vascular reactivity. Thus, in ischemic AKI, we confirmed that the vascular endothelial function of the thoracic aorta is impaired even after the recovery of kidney injury, probably with excessive ROS production. IS, which increases from ischemia to early after reperfusion, may not be a major contributor to the vascular dysfunction associated with ischemic AKI.
Collapse
|
7
|
Adsorption of extracellular proteases and pyocyanin produced by Pseudomonas aeruginosa using a macroporous magnesium oxide-templated carbon decreases cytotoxicity. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100160. [DOI: 10.1016/j.crmicr.2022.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
|
8
|
Hirakawa H, Suzue K, Takita A, Tomita H. Roles of OmpA in Type III Secretion System-Mediated Virulence of Enterohemorrhagic Escherichia coli. Pathogens 2021; 10:pathogens10111496. [PMID: 34832651 PMCID: PMC8622347 DOI: 10.3390/pathogens10111496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 11/17/2022] Open
Abstract
Outer membrane proteins are commonly produced by gram-negative bacteria, and they have diverse functions. A subgroup of proteins, which includes OmpA, OmpW and OmpX, is often involved in bacterial pathogenesis. Here we show that OmpA, rather than OmpW or OmpX, contributes to the virulence of enterohemorrhagic Escherichia coli (EHEC) through its type III secretion system (T3SS). Deletion of ompA decreased secretion of the T3SS proteins EspA and EspB; however, the expression level of the LEE genes that encode a set of T3SS proteins did not decrease. The ompA mutant had less abilities to form A/E lesions in host epithelial cells and lyse human red blood cells than the parent strain. Moreover, the virulence of an ompA mutant of Citrobacter rodentium (traditionally used to estimate T3SS-associated virulence in mice) was attenuated. Mice infected with the ompA mutant survived longer than those infected with the parent strain. Furthermore, mice infected with ompA developed symptoms of diarrhea more slowly than mice infected with the parent strain. Altogether, these results suggest that OmpA sustains the activity of the T3SS and is required for optimal virulence in EHEC. This work expands the roles of outer membrane proteins in bacterial pathogenesis.
Collapse
Affiliation(s)
- Hidetada Hirakawa
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Gunma, Japan; (A.T.); (H.T.)
- Correspondence: (H.H.); (K.S.)
| | - Kazutomo Suzue
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Gunma, Japan
- Correspondence: (H.H.); (K.S.)
| | - Ayako Takita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Gunma, Japan; (A.T.); (H.T.)
| | - Haruyoshi Tomita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Gunma, Japan; (A.T.); (H.T.)
- Laboratory of Bacterial Drug Resistance, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Gunma, Japan
| |
Collapse
|
9
|
Adsorption of Phenazines Produced by Pseudomonas aeruginosa Using AST-120 Decreases Pyocyanin-Associated Cytotoxicity. Antibiotics (Basel) 2021; 10:antibiotics10040434. [PMID: 33924459 PMCID: PMC8068879 DOI: 10.3390/antibiotics10040434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 02/02/2023] Open
Abstract
AST-120 (Kremezin) is used to treat progressive chronic kidney disease by adsorbing uremic toxin precursors produced by the gut microbiota, such as indole and phenols. Previously, we found that AST-120 decreased drug tolerance and virulence in Escherichia coli by adsorbing indole. Here, we show that AST-120 adsorbs phenazine compounds, such as pyocyanin, produced by Pseudomonas aeruginosa including multidrug-resistant P. aeruginosa strains, and suppresses pyocyanin-associated toxicity in A-549 (alveolar adenocarcinoma) and Caco-2 (colon adenocarcinoma) cells. Addition of fosfomycin, colistin and amikacin, which are often used to treat P. aeruginosa, inhibited the bacterial growth, regardless of the presence or absence of AST-120. These results suggest a further benefit of AST-120 that supports anti-Pseudomonas chemotherapy in addition to that of E. coli and propose a novel method to treat P. aeruginosa infection.
Collapse
|
10
|
Roles of the Tol-Pal system in the Type III secretion system and flagella-mediated virulence in enterohemorrhagic Escherichia coli. Sci Rep 2020; 10:15173. [PMID: 32968151 PMCID: PMC7511404 DOI: 10.1038/s41598-020-72412-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/31/2020] [Indexed: 11/19/2022] Open
Abstract
The Tol-Pal system is a protein complex that is highly conserved in many gram-negative bacteria. We show here that the Tol-Pal system is associated with the enteric pathogenesis of enterohemorrhagic E. coli (EHEC). Deletion of tolB, which is required for the Tol-Pal system decreased motility, secretion of the Type III secretion system proteins EspA/B, and the ability of bacteria to adhere to and to form attaching and effacing (A/E) lesions in host cells, but the expression level of LEE genes, including espA/B that encode Type III secretion system proteins were not affected. The Citrobacter rodentium, tolB mutant, that is traditionally used to estimate Type III secretion system associated virulence in mice did not cause lethality in mice while it induced anti-bacterial immunity. We also found that the pal mutant, which lacks activity of the Tol-Pal system, exhibited lower motility and EspA/B secretion than the wild-type parent. These combined results indicate that the Tol-Pal system contributes to the virulence of EHEC associated with the Type III secretion system and flagellar activity for infection at enteric sites. This finding provides evidence that the Tol-Pal system may be an effective target for the treatment of infectious diseases caused by pathogenic E. coli.
Collapse
|
11
|
Progress Overview of Bacterial Two-Component Regulatory Systems as Potential Targets for Antimicrobial Chemotherapy. Antibiotics (Basel) 2020; 9:antibiotics9100635. [PMID: 32977461 PMCID: PMC7598275 DOI: 10.3390/antibiotics9100635] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteria adapt to changes in their environment using a mechanism known as the two-component regulatory system (TCS) (also called “two-component signal transduction system” or “two-component system”). It comprises a pair of at least two proteins, namely the sensor kinase and the response regulator. The former senses external stimuli while the latter alters the expression profile of bacterial genes for survival and adaptation. Although the first TCS was discovered and characterized in a non-pathogenic laboratory strain of Escherichia coli, it has been recognized that all bacteria, including pathogens, use this mechanism. Some TCSs are essential for cell growth and fitness, while others are associated with the induction of virulence and drug resistance/tolerance. Therefore, the TCS is proposed as a potential target for antimicrobial chemotherapy. This concept is based on the inhibition of bacterial growth with the substances acting like conventional antibiotics in some cases. Alternatively, TCS targeting may reduce the burden of bacterial virulence and drug resistance/tolerance, without causing cell death. Therefore, this approach may aid in the development of antimicrobial therapeutic strategies for refractory infections caused by multi-drug resistant (MDR) pathogens. Herein, we review the progress of TCS inhibitors based on natural and synthetic compounds.
Collapse
|