1
|
Bernegossi AM, Galindo DJ, Peres PHF, Vozdova M, Cernohorska H, Kubickova S, Kadlcikova D, Rubes J, Duarte JMB. Comparative karyotype analysis of the red brocket deer (M. americana sensu lato and M. rufa) complex: evidence of drastic chromosomal evolution and implications on speciation process. J Appl Genet 2024; 65:601-614. [PMID: 38662189 DOI: 10.1007/s13353-024-00861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/14/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Chromosomal rearrangements are often associated with playing a role in the speciation process. However, the underlying mechanism that favors the genetic isolation associated with chromosomal changes remains elusive. In this sense, the genus Mazama is recognized by its high level of karyotype diversity among species with similar morphology. A cryptic species complex has been identified within the genus, with the red brocket deer (Mazama americana and Mazama rufa) being the most impressive example. The chromosome variation was clustered in cytotypes with diploid numbers ranging from 42 to 53 and was correlated with geographical location. We conducted an analysis of chromosome evolution of the red brocket deer complex using comparative chromosome painting and Bacterial Artificial Chromosome (BAC) clones among different cytotypes. The aim was to deepen our understanding of the karyotypic relationships within the red brocket, thereby elucidating the significant chromosome variation among closely related species. This underscores the significance of chromosome changes as a key evolutionary process shaping their genomes. The results revealed the presence of three distinct cytogenetic lineages characterized by significant karyotypic divergence, suggesting the existence of efficient post-zygotic barriers. Tandem fusions constitute the main mechanism driving karyotype evolution, following a few centric fusions, inversion X-autosomal fusions. The BAC mapping has improved our comprehension of the karyotypic relationships within the red brocket deer complex, prompting questions regarding the role of these changes in the speciation process. We propose the red brocket as a model group to investigate how chromosomal changes contribute to isolation and explore the implications of these changes in taxonomy and conservation.
Collapse
Affiliation(s)
- Agda Maria Bernegossi
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, 14884-900, Brazil
| | - David Javier Galindo
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, 14884-900, Brazil.
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, National University of San Marcos, San Borja, 15021, Lima, Peru.
| | - Pedro Henrique Faria Peres
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, 14884-900, Brazil
| | - Miluse Vozdova
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - Halina Cernohorska
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - Svatava Kubickova
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - Dita Kadlcikova
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - Jiri Rubes
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - José Maurício Barbanti Duarte
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, 14884-900, Brazil.
| |
Collapse
|
2
|
Molecular Cytogenetics in Domestic Bovids: A Review. Animals (Basel) 2023; 13:ani13050944. [PMID: 36899801 PMCID: PMC10000107 DOI: 10.3390/ani13050944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The discovery of the Robertsonian translocation (rob) involving cattle chromosomes 1 and 29 and the demonstration of its deleterious effects on fertility focused the interest of many scientific groups on using chromosome banding techniques to reveal chromosome abnormalities and verify their effects on fertility in domestic animals. At the same time, comparative banding studies among various species of domestic or wild animals were found useful for delineating chromosome evolution among species. The advent of molecular cytogenetics, particularly the use of fluorescence in situ hybridization (FISH), has allowed a deeper investigation of the chromosomes of domestic animals through: (a) the physical mapping of specific DNA sequences on chromosome regions; (b) the use of specific chromosome markers for the identification of the chromosomes or chromosome regions involved in chromosome abnormalities, especially when poor banding patterns are produced; (c) better anchoring of radiation hybrid and genetic maps to specific chromosome regions; (d) better comparisons of related and unrelated species by comparative FISH mapping and/or Zoo-FISH techniques; (e) the study of meiotic segregation, especially by sperm-FISH, in some chromosome abnormalities; (f) better demonstration of conserved or lost DNA sequences in chromosome abnormalities; (g) the use of informatic and genomic reconstructions, in addition to CGH arrays, to predict conserved or lost chromosome regions in related species; and (h) the study of some chromosome abnormalities and genomic stability using PCR applications. This review summarizes the most important applications of molecular cytogenetics in domestic bovids, with an emphasis on FISH mapping applications.
Collapse
|
3
|
Perucatti A, Iannuzzi A, Armezzani A, Palmarini M, Iannuzzi L. Comparative Fluorescence In Situ Hybridization (FISH) Mapping of Twenty-Three Endogenous Jaagsiekte Sheep Retrovirus (enJSRVs) in Sheep ( Ovis aries) and River Buffalo ( Bubalus bubalis) Chromosomes. Animals (Basel) 2022; 12:ani12202834. [PMID: 36290220 PMCID: PMC9597706 DOI: 10.3390/ani12202834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Endogenous retroviruses (ERVs) are the remnants of ancient infections of host germline cells, thus representing key tools to study host and viral evolution. Homologous ERV sequences often map at the same genomic locus of different species, indicating that retroviral integration occurred in the genomes of the common ancestors of those species. The genome of domestic sheep (Ovis aries) harbors at least twenty-seven copies of ERVs related to the exogenous and pathogenic Jaagsiekte sheep retrovirus (JSRVs), thus referred to as enJSRVs. Some of these loci are unequally distributed between breeds and individuals of the host species due to polymorphic insertions, thereby representing invaluable tools to trace the evolutionary dynamics of virus populations within their hosts. In this study, we extend the cytogenetic physical maps of sheep and river buffalo by performing fluorescent in situ hybridization (FISH) mapping of twenty-three genetically characterized enJSRVs. Additionally, we report the first comparative FISH mapping of enJSRVs in domestic sheep (2n = 54) and river buffalo (Bubalus bubalis, 2n = 50). Finally, we demonstrate that enJSRV loci are conserved in the homologous chromosomes and chromosome bands of both species. Altogether, our results support the hypothesis that enJSRVs were present in the genomes of both species before they differentiated within the Bovidae family.
Collapse
Affiliation(s)
- Angela Perucatti
- National Research Council (CNR), Institute of Animal Production System on Mediterranean Environment (ISPAAM), Piazzale E. Fermi, 1, 80055 Portici, Italy
| | - Alessandra Iannuzzi
- National Research Council (CNR), Institute of Animal Production System on Mediterranean Environment (ISPAAM), Piazzale E. Fermi, 1, 80055 Portici, Italy
- Correspondence: ; Tel.: +39-32-8961-7073
| | - Alessia Armezzani
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61-1QH, UK
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61-1QH, UK
| | - Leopoldo Iannuzzi
- National Research Council (CNR), Institute of Animal Production System on Mediterranean Environment (ISPAAM), Piazzale E. Fermi, 1, 80055 Portici, Italy
| |
Collapse
|
4
|
Pauciullo A, Versace C, Perucatti A, Gaspa G, Li LY, Yang CY, Zheng HY, Liu Q, Shang JH. Oocyte aneuploidy rates in river and swamp buffalo types (Bubalus bubalis) determined by Multi-color Fluorescence In Situ Hybridization (M-FISH). Sci Rep 2022; 12:8440. [PMID: 35590020 PMCID: PMC9120204 DOI: 10.1038/s41598-022-12603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/13/2022] [Indexed: 11/15/2022] Open
Abstract
Aneuploidy is one of the main causes of fetal and embryonic mortality in mammals. Nonetheless, its incidence in domestic ruminants has been investigated little. Indeed, no incidence data have ever been reported for water buffalo. To establish the incidence of aneuploidy in this species, we analysed in vitro matured metaphase II (MII) oocytes with corresponding first polar bodies (I PB) of the river (2n = 50) and swamp (2n = 48) buffaloes. For the first time, six river type probes (corresponding to chromosomes 1–5 and heterosome X), were tested on swamp buffalo metaphases using Multicolor-Fluorescent In Situ Hybridization (M-FISH) before their use on oocytes MII metaphases. Of the 120 total Cumulus Oocyte Complexes (COCs, 60 for each buffalo type) subjected to in vitro maturation, 104 reached the MII stage and were analysed by M-FISH. Haploid chromosome arrangement and visible I PB were observed in 89 of the oocytes (45 in river and 44 in swamp type). In the river type, the analysis revealed one oocyte was disomic for the chromosome X (2.22%). In the swamp type, one oocyte was found to be nullisomic for chromosome X (2.27%); another was found to be nullisomic for chromosome 5 (2.27%). We also observed one oocyte affected by a premature separation of sister chromatids (PSSC) on the chromosome X (2.27%). In both buffalo types, no abnormalities were detected in other investigated chromosomes. Based on merged data, the overall aneuploidy rate for the species was 3.37%. Oocytes with unreduced chromosomes averaged 1.92% across the two types, with 1.96% in river and 1.88% in swamp. The interspecies comparison between these data and cattle and pig published data revealed substantial difference in both total aneuploidy and diploidy rates. Reducing the negative impact of the meiotic segregation errors on the fertility is key to more sustainable breeding, an efficient embryo transfer industry and ex-situ bio-conservation. In this respect, additional M-FISH studies are needed on oocytes of domestic species using larger sets of probes and/or applying next generation sequencing technologies.
Collapse
Affiliation(s)
- Alfredo Pauciullo
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095, Grugliasco (TO), Italy.
| | - Carmine Versace
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095, Grugliasco (TO), Italy
| | - Angela Perucatti
- Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM, 80056, Portici (NA), Italy
| | - Giustino Gaspa
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095, Grugliasco (TO), Italy
| | - Ling-Yu Li
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Chun-Yan Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Hai-Ying Zheng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Qinyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Jiang-Hua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| |
Collapse
|
5
|
The Cytogenetics of the Water Buffalo: A Review. Animals (Basel) 2021; 11:ani11113109. [PMID: 34827841 PMCID: PMC8614332 DOI: 10.3390/ani11113109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
The water buffalo (Bubalus bubalis), also known as the Asian buffalo, is an essential domestic bovid. Indeed, although its world population (~209 million heads) is approximately one-ninth that of cattle, the management of this species involves a larger human population than that involved with raising cattle. Compared with cattle, water buffalo have been understudied for many years, but interest in this species has been increasing, especially considering that the world population of these bovids grows every year-particularly that of the river buffalo. There are two genera of buffalo worldwide: the Syncerus (from the African continent), and the Bubalus (from the southwest Asian continent, Mediterranean area, southern America, and Australia). All species belonging to these two genera have specific chromosome numbers and shapes. Because of such features, the study of chromosomes is a fascinating biological basis for differentiating various species (and hybrids) of buffaloes and characterizing their karyotypes in evolutionary, clinical, and molecular studies. In this review, we report an update on essential cytogenetic studies in which various buffalo species were described from evolutionary, clinical, and molecular perspectives-particularly considering the river buffalo (Bubalus bubalis 2n = 50). In addition, we show new data on swamp buffalo chromosomes.
Collapse
|
6
|
Chromosome Abnormalities and Fertility in Domestic Bovids: A Review. Animals (Basel) 2021; 11:ani11030802. [PMID: 33809390 PMCID: PMC8001068 DOI: 10.3390/ani11030802] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In domestic bovids, numerical autosome abnormalities have been rarely reported, as they present abnormal animal phenotypes quickly eliminated by breeders. However, numerical abnormalities involving sex chromosomes and structural (balanced) chromosome anomalies have been more frequently detected because they are most often not phenotypically visible to breeders. For this reason, these chromosome abnormalities, without a cytogenetic control, escape animal selection, with subsequent deleterious effects on fertility, especially in female carriers. Abstract After discovering the Robertsonian translocation rob(1;29) in Swedish red cattle and demonstrating its harmful effect on fertility, the cytogenetics applied to domestic animals have been widely expanded in many laboratories in order to find relationships between chromosome abnormalities and their phenotypic effects on animal production. Numerical abnormalities involving autosomes have been rarely reported, as they present abnormal animal phenotypes quickly eliminated by breeders. In contrast, numerical sex chromosome abnormalities and structural chromosome anomalies have been more frequently detected in domestic bovids because they are often not phenotypically visible to breeders. For this reason, these chromosome abnormalities, without a cytogenetic control, escape selection, with subsequent harmful effects on fertility, especially in female carriers. Chromosome abnormalities can also be easily spread through the offspring, especially when using artificial insemination. The advent of chromosome banding and FISH-mapping techniques with specific molecular markers (or chromosome-painting probes) has led to the development of powerful tools for cytogeneticists in their daily work. With these tools, they can identify the chromosomes involved in abnormalities, even when the banding pattern resolution is low (as has been the case in many published papers, especially in the past). Indeed, clinical cytogenetics remains an essential step in the genetic improvement of livestock.
Collapse
|
7
|
Genualdo V, Turri F, Pizzi F, Castiglioni B, Marletta D, Iannuzzi A. Sperm Nuclei Analysis and Nuclear Organization of a Fertile Boar-Pig Hybrid by 2D FISH on Both Total and Motile Sperm Fractions. Animals (Basel) 2021; 11:738. [PMID: 33800504 PMCID: PMC8001930 DOI: 10.3390/ani11030738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 11/24/2022] Open
Abstract
A wide range of mammalian hybrids has recently been found by chance or through population-screening programs, but studies about their fertilizing capacity remain scarce and incomplete. Most of them are assumed to be sterile due to meiotic arrest caused by the failure of chromosome pairings. In this study, we evaluated both sperm meiotic segregation, by 2D fluorescent in situ hybridization (FISH) analysis, and sperm quality (Sperm Chromatin Structure Assay) by flow cytometer in a fertile boar-pig hybrid (2n = 37,XY) originating from a Nero Siciliano pig breed (Sus scrofa domesticus) and a wild boar (Sus scrofa ferus). Spermatozoa were also separated by a dual-layer (75-60%) discontinuous Percoll gradient, resulting in two fractions with a significantly better overall quality in the motile sperm fraction. These data were confirmed by FISH analysis also, where the frequencies of spermatozoa with a regular chromosome composition were 27% in total sperm fraction and 64% in motile sperm fraction. We also evaluated the nuclear architecture in all counted spermatozoa, showing a chromatin distribution changing when chromosome abnormalities occur. Our results demonstrate that the chromosome pairing has a minimal effect on the sperm segregation and semen quality of a boar-pig hybrid, making it fertile and harmful for the conservation of autochthonous pig breeds.
Collapse
Affiliation(s)
- Viviana Genualdo
- Institute for Animal Production System in Mediterranean Environment, National Research Council, Portici, 80055 Napoli, Italy;
| | - Federica Turri
- Institute of Agricultural Biology and Biotechnology, National Research Council, 26900 Lodi, Italy; (F.T.); (F.P.); (B.C.)
| | - Flavia Pizzi
- Institute of Agricultural Biology and Biotechnology, National Research Council, 26900 Lodi, Italy; (F.T.); (F.P.); (B.C.)
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology, National Research Council, 26900 Lodi, Italy; (F.T.); (F.P.); (B.C.)
| | - Donata Marletta
- Department of Agriculture, Food and Environment, University of Catania, 95131 Catania, Italy;
| | - Alessandra Iannuzzi
- Institute for Animal Production System in Mediterranean Environment, National Research Council, Portici, 80055 Napoli, Italy;
| |
Collapse
|
8
|
Iannuzzi A, Della Valle G, Russo M, Longobardi V, Albero G, De Canditiis C, Kosior MA, Pistucci R, Gasparrini B. Evaluation of bovine sperm telomere length and association with semen quality. Theriogenology 2020; 158:227-232. [PMID: 32980685 DOI: 10.1016/j.theriogenology.2020.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
The study aimed to evaluate if the sperm telomere length can be considered as a new biomarker for sperm quality in bulls. Sperm Telomere Length was evaluated by Monochrome Multiplex Quantitative PCR in group A (n = 8) and group B (n = 8) bulls, classified according to standard semen analysis. Also, this parameter was measured before and after Percoll gradient separation within bulls that produced semen of satisfactory quality. Sperm telomere length, measured as T/S ratio (average ratio of telomere repeats copy number to a single copy gene), was higher in group A than in group B bulls (0.77 ± 0.03 vs 0.43 ± 0.06; P < 0.01). Sperm telomere length was positively correlated with motility, viability and membrane integrity, and it was negatively correlated with sperm anomalies. Furthermore, Percoll gradient selected sperms with higher T/S ratio than unselected sperms (1.19 ± 0.02 vs 0.67 ± 0.03). These results suggest that sperm telomere length can be used as a new marker of bovine semen quality.
Collapse
Affiliation(s)
- Alessandra Iannuzzi
- National Research Council (CNR), ISPAAM, Laboratory of Animal Cytogenetics and Genomics, Via Argine, 1085, 80147, Naples, Italy
| | - Giovanni Della Valle
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, Via F. Delpino 1, 80137, Naples, Italy
| | - Marco Russo
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, Via F. Delpino 1, 80137, Naples, Italy.
| | - Valentina Longobardi
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, Via F. Delpino 1, 80137, Naples, Italy; Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, 80138, Naples, Italy
| | - Giuseppe Albero
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, Via F. Delpino 1, 80137, Naples, Italy
| | - Carolina De Canditiis
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, Via F. Delpino 1, 80137, Naples, Italy
| | - Michal Andrzej Kosior
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, Via F. Delpino 1, 80137, Naples, Italy
| | - Ramona Pistucci
- National Research Council (CNR), ISPAAM, Laboratory of Animal Cytogenetics and Genomics, Via Argine, 1085, 80147, Naples, Italy
| | - Bianca Gasparrini
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, Via F. Delpino 1, 80137, Naples, Italy
| |
Collapse
|