1
|
Abdellaoui N, Kim SY, Kim KH, Kim MS. Effects of Non-Virion Gene Expression Level and Viral
Genome Length on the Replication and Pathogenicity of Viral Hemorrhagic Septicemia Virus. Viruses 2022; 14:v14091886. [PMID: 36146693 PMCID: PMC9505938 DOI: 10.3390/v14091886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Fish novirhabdoviruses, including viral hemorrhagic septicemia virus (VHSV), hirame rhabdovirus (HIRRV), and infectious hematopoietic necrosis virus (IHNV), harbor a unique non-virion (NV) gene that is crucial for efficient replication and pathogenicity. The effective levels and the function of the N-terminal region of the NV protein, however, remain poorly understood. In the present study, several recombinant VHSVs, which completely lack (rVHSV-ΔNV) or harbor an additional (rVHSV-dNV) NV gene, were generated using reverse genetics. To confirm the function of the N-terminal region of the NV protein, recombinant VHSVs with the NV gene that gradually mutated from the start codon (ATG) to the stop codon (TGA), expressed as N-terminally truncated NV proteins (rVHSV-NV1, -NV2, and -NV3), were generated. CPE progression and viral growth analyses showed that epithelioma papulosum cyprini (EPC) cells infected with rVHSV-ΔNV or rVHSV-NV3—which did not express NV protein—rarely showed CPE and viral replication as opposed to EPC cells infected with rVHSV-wild. Interestingly, regardless of the presence of two NV genes in the rVHSV-dNV genome, EPC cells infected with rVHSV-dNV or rVHSV-A-EGFP (control) failed to induce CPE and viral replication. In EPC cells infected with rVHSV-dNV or rVHSV-A-EGFP, which harbored a longer VHSV genome than the wild-type, Mx gene expression levels, which were detected by luciferase activity assay, were particularly high; Mx gene expression levels were higher in EPC cells infected with rVHSV-ΔNV, -NV2, or -NV3 than in those infected with rVHSV-wild or rVHSV-NV1. The total amount of NV transcript produced in EPC cells infected with rVHSV-wild was much higher than that in EPC cells infected with rVHSV-dNV. However, the expression levels of the NV gene per viral particle were significantly higher in EPC cells infected with rVHSV-dNV than in cells infected with rVHSV-wild. These results suggest that the NV protein is an essential component in the inhibition of host type-I interferon (IFN) and the induction of viral replication. Most importantly, viral genome length might affect viral replication efficiency to a greater extent than does NV gene expression. In in vivo pathogenicity experiments, the cumulative mortality rates of olive flounder fingerlings infected with rVHSV-dNV or rVHSV-wild were similar (60–70%), while those of fingerlings infected with rVHSV-A-EGFP were lower. Moreover, the virulence of rVHSV-ΔNV and rVHSV, both harboring a truncated NV gene (rVHSV-NV1, -NV2, and -NV3), was completely attenuated in the olive flounder. These results suggest that viral pathogenicity is affected by the viral replication rate and NV gene expression. In conclusion, the genome length and NV gene (particularly the N-terminal region) expression of VHSVs are closely associated with viral replication in host type-I IFN response and the viral pathogenicity.
Collapse
Affiliation(s)
- Najib Abdellaoui
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea
| | - Seon Young Kim
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Korea
| | - Min Sun Kim
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea
- Correspondence:
| |
Collapse
|
2
|
Kim RK, Fitzgerald SD, Kiupel M, Faisal M. Tissue Distribution of the Piscine Novirhabdovirus Genotype IVb in Muskellunge (Esox masquinongy). Animals (Basel) 2022; 12:ani12131624. [PMID: 35804529 PMCID: PMC9264975 DOI: 10.3390/ani12131624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary A novel strain of viral hemorrhagic septicemia virus was discovered in the Great Lakes. This Great Lakes strain of the virus infects a broad range of fish species with outcomes ranging from clinical and subclinical disease, persistent viral shedding, and/or death. Among the most susceptible species to the Great Lakes strain of the virus are juvenile muskellunge. Increased susceptibility to the virus in this regionally and economic important species generated a multitude of research questions to include but not limited to host range, pathogenesis, and diagnostic tools to efficiently detect and minimize viral spread into captive fish stocks. The overarching aim of the current study focuses on assessing the early and latter stages of disease progression in a battery of traditional and non-traditional diagnostically relevant tissues in juvenile muskellunge. Tissue damage from the virus and amount of live virus in each tissue were evaluated in conjunction with advanced diagnostic methods to identify cells targeted by the virus when possible. Abstract A novel sublineage of the piscine novirhabdovirus (synonym: viral hemorrhagic septicemia virus), genotype IVb, emerged in the Laurentian Great Lakes, causing serious losses in resident fish species as early as 2003. Experimentally infected juvenile muskellunge (Esox masquinongy) were challenged with VHSV-IVb at high (1 × 105 PFU mL−1), medium (4 × 103 PFU mL−1), and low (100 PFU mL−1) doses. Samples from spleen, kidneys, heart, liver, gills, pectoral fin, large intestine, and skin/muscle were collected simultaneously from four fish at each predetermined time point and processed for VHSV-IVb reisolaton on Epitheliosum papulosum cyprini cell lines and quantification by plaque assay. The earliest reisolation of VHSV-IVb occurred in one fish from pectoral fin samples at 24 h post-infection. By 6 days post-infection (dpi), all tissue types were positive for VHSV-IVb. Statistical analysis suggested that virus levels were highest in liver, heart, and skin/muscle samples. In contrast, the kidneys and spleen exhibited reduced probability of virus recovery. Virus distribution was further confirmed by an in situ hybridization assay using a VHSV-IVb specific riboprobe. Heart muscle fibers, hepatocytes, endothelia, smooth muscle cells, and fibroblast-like cells of the pectoral fin demonstrated riboprobe labeling, thus highlighting the broad cellular tropism of VHSV-IVb. Histopathologic lesions were observed in areas where the virus was visualized.
Collapse
Affiliation(s)
- Robert K. Kim
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, 1129 Farm Lane, Room 340G, East Lansing, MI 48824, USA;
| | - Scott D. Fitzgerald
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 4125 Beaumont Road, Building 0215, East Lansing, MI 48910, USA; (S.D.F.); (M.K.)
| | - Matti Kiupel
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 4125 Beaumont Road, Building 0215, East Lansing, MI 48910, USA; (S.D.F.); (M.K.)
| | - Mohamed Faisal
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, 1129 Farm Lane, Room 340G, East Lansing, MI 48824, USA;
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 4125 Beaumont Road, Building 0215, East Lansing, MI 48910, USA; (S.D.F.); (M.K.)
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, 1129 Farm Lane, Room 340G, East Lansing, MI 48824, USA
- Correspondence:
| |
Collapse
|