1
|
Zheng Q, Peng Q, Shen J, Liu H. Efficient analysis of toxicity and mechanisms of Acetyl tributyl citrate on aging with network toxicology and molecular docking strategy. Toxicology 2025; 510:154009. [PMID: 39580138 DOI: 10.1016/j.tox.2024.154009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
The aim of this study was to apply a network toxicology strategy to investigate the potential toxicity and the molecular mechanisms underlying the aging-induced toxicity of acetyl tributyl citrate (ATBC). Utilizing the ChEMBL, SwissTargetPrediction, and CellAge databases, we identified 32 potential targets associated with ATBC exposure and aging. Subsequent optimization by STRING and Cytoscape software highlighted 11 core targets, including EGFR, STAT3, and BCL-2. A comprehensive analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed that core targets of ATBC-induced senescence were predominantly enriched in pathways related to the positive regulation of cell proliferation, telomere shortening, cancer, and cellular senescence. Among these pathways, we selected four core genes of the cellular senescence pathway (MAPK14, CDK2, MDM2, and PIK3CA) for molecular docking with Autodock, which confirmed the high binding affinity between ATBC and the core targets. In conclusion, these findings indicate that ATBC may contribute to human aging by modulating the positive regulation of cell proliferation, the telomere shortening pathway, the cancer-related pathway, and the cellular senescence pathway. This study establishes a theoretical basis for exploring the molecular mechanisms of human aging induced by ATBC, alongside a systematic and effective framework for researchers to assess the potential toxicity of various chemical products.
Collapse
Affiliation(s)
- Qiu Zheng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qingping Peng
- Collage of Integrated Traditional Chines and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jianlin Shen
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, 351100,China; Central Laboratory,Affiliated Hospital of Putian University, Putian 351100, China.
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
2
|
Di Carlo E, Sorrentino C. State of the art CRISPR-based strategies for cancer diagnostics and treatment. Biomark Res 2024; 12:156. [PMID: 39696697 DOI: 10.1186/s40364-024-00701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology is a groundbreaking and dynamic molecular tool for DNA and RNA "surgery". CRISPR/Cas9 is the most widely applied system in oncology research. It is a major advancement in genome manipulation due to its precision, efficiency, scalability and versatility compared to previous gene editing methods. It has shown great potential not only in the targeting of oncogenes or genes coding for immune checkpoint molecules, and in engineering T cells, but also in targeting epigenomic disturbances, which contribute to cancer development and progression. It has proven useful for detecting genetic mutations, enabling the large-scale screening of genes involved in tumor onset, progression and drug resistance, and in speeding up the development of highly targeted therapies tailored to the genetic and immunological profiles of the patient's tumor. Furthermore, the recently discovered Cas12 and Cas13 systems have expanded Cas9-based editing applications, providing new opportunities in the diagnosis and treatment of cancer. In addition to traditional cis-cleavage, they exhibit trans-cleavage activity, which enables their use as sensitive and specific diagnostic tools. Diagnostic platforms like DETECTR, which employs the Cas12 enzyme, that cuts single-stranded DNA reporters, and SHERLOCK, which uses Cas12, or Cas13, that specifically target and cleave single-stranded RNA, can be exploited to speed up and advance oncological diagnostics. Overall, CRISPR platform has the great potential to improve molecular diagnostics and the functionality and safety of engineered cellular medicines. Here, we will emphasize the potentially transformative impact of CRISPR technology in the field of oncology compared to traditional treatments, diagnostic and prognostic approaches, and highlight the opportunities and challenges raised by using the newly introduced CRISPR-based systems for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
3
|
Ludwig ML, Michmerhuizen NL, Wang J, Birkeland AC, Majchrowski BK, Nimmagadda S, Zhai J, Bhangale A, Kulkarni A, Jiang H, Swiecicki PL, Brenner JC. Multi-kinase compensation rescues EGFR knockout in a cell line model of head and neck squamous cell carcinoma. Arch Oral Biol 2023; 156:105822. [PMID: 37844343 PMCID: PMC11209876 DOI: 10.1016/j.archoralbio.2023.105822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a debilitating disease with poor survival rates. While the epidermal growth factor receptor (EGFR)-targeting antibody Cetuximab is approved for treatment, responses are limited and the molecular mechanisms driving resistance remain incompletely understood. METHODS To better understand how cells survive without EGFR activity, we developed an EGFR knockout derivative of the UM-SCC-92 cell line using CRISPR/Cas9 technology. We then characterized changes to the transcriptome with RNAseq and changes in response to kinase inhibitors with resazurin cell viability assays. Finally, we tested if inhibitors with activity in the EGFR knockout model also had synergistic activity in combination with EGFR inhibitors in either wild type UM-SCC-92 cells or a known Cetuximab-resistant model. RESULTS Functional and molecular analysis showed that knockout cells had decreased cell proliferation, upregulation of FGFR1 expression, and an enhanced mesenchymal phenotype. In fact, expression of common EMT genes including VIM, SNAIL1, ZEB1 and TWIST1 were all upregulated in the EGFR knockout. Surprisingly, EGFR knockout cells were resistant to FGFR inhibitor monotherapies, but sensitive to combinations of FGFR and either XIAP or IGF-1R inhibitors. Accordingly, both wild type UM-SCC-92 and Cetuximab-resistant UM-SCC-104 cells with were sensitive to combined inhibition of EGFR, FGFR and either XIAP or IGF-1R. CONCLUSIONS These data offer insights into EGFR inhibitor resistance and show that resistance to EGFR knockout likely occurs through a complex network of kinases. Future studies of cetuximab-resistant HNSCC tumors are warranted to determine if this EMT phenotype and/or multi-kinase resistance is observed in patients.
Collapse
Affiliation(s)
- Megan L Ludwig
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Nicole L Michmerhuizen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jiayu Wang
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Andrew C Birkeland
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Behirda K Majchrowski
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Sai Nimmagadda
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jingyi Zhai
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Apurva Bhangale
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Aditi Kulkarni
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Hui Jiang
- Rogel Cancer Center University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Paul L Swiecicki
- Department of Hematology Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Rogel Cancer Center University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - J Chad Brenner
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Rogel Cancer Center University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
4
|
Choi HJ, Jeong YJ, Kim J, Hoe HS. EGFR is a potential dual molecular target for cancer and Alzheimer's disease. Front Pharmacol 2023; 14:1238639. [PMID: 37601068 PMCID: PMC10433764 DOI: 10.3389/fphar.2023.1238639] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Many researchers are attempting to identify drugs that can be repurposed as effective therapies for Alzheimer's disease (AD). Several recent studies have highlighted epidermal growth factor receptor (EGFR) inhibitors approved for use as anti-cancer drugs as potential candidates for repurposing as AD therapeutics. In cancer, EGFR inhibitors target cell proliferation and angiogenesis, and studies in AD mouse models have shown that EGFR inhibitors can attenuate amyloid-beta (Aβ) pathology and improve cognitive function. In this review, we discuss the different functions of EGFR in cancer and AD and the potential of EGFR as a dual molecular target for AD diseases. In addition, we describe the effects of anti-cancer EGFR tyrosine kinase inhibitors (TKIs) on AD pathology and their prospects as therapeutic interventions for AD. By summarizing the physiological functions of EGFR in cancer and AD, this review emphasizes the significance of EGFR as an important molecular target for these diseases.
Collapse
Affiliation(s)
- Hee-Jeong Choi
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Yoo Joo Jeong
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| |
Collapse
|
5
|
Ten Years of CRISPRing Cancers In Vitro. Cancers (Basel) 2022; 14:cancers14235746. [PMID: 36497228 PMCID: PMC9738354 DOI: 10.3390/cancers14235746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
Cell lines have always constituted a good investigation tool for cancer research, allowing scientists to understand the basic mechanisms underlying the complex network of phenomena peculiar to the transforming path from a healthy to cancerous cell. The introduction of CRISPR in everyday laboratory activity and its relative affordability greatly expanded the bench lab weaponry in the daily attempt to better understand tumor biology with the final aim to mitigate cancer's impact in our lives. In this review, we aim to report how this genome editing technique affected in the in vitro modeling of different aspects of tumor biology, its several declinations, and analyze the advantages and drawbacks of each of them.
Collapse
|
6
|
Vaghari-Tabari M, Hassanpour P, Sadeghsoltani F, Malakoti F, Alemi F, Qujeq D, Asemi Z, Yousefi B. CRISPR/Cas9 gene editing: a new approach for overcoming drug resistance in cancer. Cell Mol Biol Lett 2022; 27:49. [PMID: 35715750 PMCID: PMC9204876 DOI: 10.1186/s11658-022-00348-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/24/2022] [Indexed: 12/18/2022] Open
Abstract
The CRISPR/Cas9 system is an RNA-based adaptive immune system in bacteria and archaea. Various studies have shown that it is possible to target a wide range of human genes and treat some human diseases, including cancers, by the CRISPR/Cas9 system. In fact, CRISPR/Cas9 gene editing is one of the most efficient genome manipulation techniques. Studies have shown that CRISPR/Cas9 technology, in addition to having the potential to be used as a new therapeutic approach in the treatment of cancers, can also be used to enhance the effectiveness of existing treatments. Undoubtedly, the issue of drug resistance is one of the main obstacles in the treatment of cancers. Cancer cells resist anticancer drugs by a variety of mechanisms, such as enhancing anticancer drugs efflux, enhancing DNA repair, enhancing stemness, and attenuating apoptosis. Mutations in some proteins of different cellular signaling pathways are associated with these events and drug resistance. Recent studies have shown that the CRISPR/Cas9 technique can be used to target important genes involved in these mechanisms, thereby increasing the effectiveness of anticancer drugs. In this review article, studies related to the applications of this technique in overcoming drug resistance in cancer cells will be reviewed. In addition, we will give a brief overview of the limitations of the CRISP/Cas9 gene-editing technique.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Huang L, Liao Z, Liu Z, Chen Y, Huang T, Xiao H. Application and Prospect of CRISPR/Cas9 Technology in Reversing Drug Resistance of Non-Small Cell Lung Cancer. Front Pharmacol 2022; 13:900825. [PMID: 35620280 PMCID: PMC9127258 DOI: 10.3389/fphar.2022.900825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer drug resistance has always been a major factor affecting the treatment of non-small cell lung cancer, which reduces the quality of life of patients. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) technology, as an efficient and convenient new gene-editing technology, has provided a lot of help to the clinic and accelerated the research of cancer and drug resistance. In this review, we introduce the mechanisms of drug resistance in non-small cell lung cancer (NSCLC), discuss how the CRISPR/Cas9 system can reverse multidrug resistance in NSCLC, and focus on drug resistance gene mutations. To improve the prognosis of NSCLC patients and further improve patients' quality of life, it is necessary to utilize the CRISPR/Cas9 system in systematic research on cancer drug resistance.
Collapse
Affiliation(s)
- Lu Huang
- Department of Clinical Pharmacy, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhi Liao
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhixi Liu
- Department of Clinical Pharmacy, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| | - Yan Chen
- Department of Clinical Pharmacy, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingwenli Huang
- Department of Clinical Pharmacy, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| | - Hongtao Xiao
- Department of Clinical Pharmacy, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
8
|
Xiang Y, Zheng G, Zhong J, Sheng J, Qin H. Advances in Renal Cell Carcinoma Drug Resistance Models. Front Oncol 2022; 12:870396. [PMID: 35619895 PMCID: PMC9128023 DOI: 10.3389/fonc.2022.870396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer. Systemic therapy is the preferred method to eliminate residual cancer cells after surgery and prolong the survival of patients with inoperable RCC. A variety of molecular targeted and immunological therapies have been developed to improve the survival rate and prognosis of RCC patients based on their chemotherapy-resistant properties. However, owing to tumor heterogeneity and drug resistance, targeted and immunological therapies lack complete and durable anti-tumor responses; therefore, understanding the mechanisms of systemic therapy resistance and improving clinical curative effects in the treatment of RCC remain challenging. In vitro models with traditional RCC cell lines or primary cell culture, as well as in vivo models with cell or patient-derived xenografts, are used to explore the drug resistance mechanisms of RCC and screen new targeted therapeutic drugs. Here, we review the established methods and applications of in vivo and in vitro RCC drug resistance models, with the aim of improving our understanding of its resistance mechanisms, increasing the efficacy of combination medications, and providing a theoretical foundation for the development and application of new drugs, drug screening, and treatment guidelines for RCC patients.
Collapse
Affiliation(s)
- Yien Xiang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Ge Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Jianfeng Zhong
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Li Y, Lu L, Zhang G, Ji G, Xu H. The role and therapeutic implication of endoplasmic reticulum stress in inflammatory cancer transformation. Am J Cancer Res 2022; 12:2277-2292. [PMID: 35693091 PMCID: PMC9185617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023] Open
Abstract
Endoplasmic reticulum (ER) stress occurs when proteins are affected by various factors, fail to fold properly into higher structures and accumulate in the lumen of the ER, which activates the unfolded protein response (UPR) to restore normal cellular function or induce apoptosis as a self-protective mechanism. However, a growing number of studies have shown that the three branches of ER stress and the UPR can mediate inflammation and cancer development by interacting with inflammatory transformation-related signaling pathways. Targeting the UPR, especially the use of small molecules that target the active sites of the enzymes IRE1α and PERK and BIP/GRP78 inhibitors are potential strategies for treating tumors and have shown promising results in some tumor models. Therefore, in this review, we summarize the progress of ER stress/UPR research and the signaling pathways associated with inflammatory cancer transformation, provide an in-depth description of the mechanisms of these pathways, and outline strategies in the field of UPR biology in tumor therapy to provide new ideas for the mechanisms of inflammatory cancer transformation and tumor-related treatment.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai 200032, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai 200032, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai 200032, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai 200032, China
| |
Collapse
|
10
|
Mar N, Kaakour D, Rezazadeh Kalebasty A. Renal Cell Carcinoma-Lessons in Diversity, Breakthroughs, and Challenges. JCO Oncol Pract 2021; 18:197-199. [PMID: 34550754 DOI: 10.1200/op.21.00446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Nataliya Mar
- Division of Hematology/Oncology, University of California Irvine, Irvine, CA
| | - Dalia Kaakour
- Department of Medicine, University of California Irvine, Irvine, CA
| | | |
Collapse
|
11
|
García-Alonso S, Romero-Pérez I, Gandullo-Sánchez L, Chinchilla L, Ocaña A, Montero JC, Pandiella A. Altered proTGFα/cleaved TGFα ratios offer new therapeutic strategies in renal carcinoma. J Exp Clin Cancer Res 2021; 40:256. [PMID: 34399807 PMCID: PMC8365933 DOI: 10.1186/s13046-021-02051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Treatment of renal cancer has significantly improved with the arrival to the clinic of kinase inhibitors and immunotherapies. However, the disease is still incurable in advanced stages. The fact that several approved inhibitors for kidney cancer target receptor tyrosine kinases (RTKs) suggests that these proteins play a critical role in the pathophysiology of the disease. Based on these precedents, we decided to explore whether RTKs other than those targeted by approved drugs, contribute to the development of kidney cancer. METHODS The activation status of 49 RTKs in 44 paired samples of normal and tumor kidney tissue was explored using antibody arrays, with validation by western blotting. Genetic and pharmacologic approaches were followed to study the biological implications of targeting the epidermal growth factor receptor (EGFR) and its ligand Transforming Growth Factor-α (TGFα). RESULTS Activation of the EGFR was found in a substantial number of tumors. Moreover, kidney tumors expressed elevated levels of TGFα. Down-regulation of EGFR or TGFα using RNAi or their pharmacological targeting with blocking antibodies resulted in inhibition of the proliferation of in vitro cellular models of renal cancer. Importantly, differences in the molecular forms of TGFα expressed by tumors and normal tissues were found. In fact, tumor TGFα was membrane anchored, while that expressed by normal kidney tissue was proteolytically processed. CONCLUSIONS The EGFR-TGFα axis plays a relevant role in the pathophysiology of kidney cancer. This study unveils a distinctive feature in renal cell carcinomas, which is the presence of membrane-anchored TGFα. That characteristic could be exploited therapeutically to act on tumors expressing transmembrane TGFα, for example, with antibody drug conjugates that could recognize the extracellular region of that protein.
Collapse
Affiliation(s)
- Sara García-Alonso
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and CIBERONC. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Inés Romero-Pérez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and CIBERONC. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Lucía Gandullo-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and CIBERONC. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Luis Chinchilla
- Pathology Service, University Hospital and IBSAL, Salamanca, Spain
| | | | - Juan Carlos Montero
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and CIBERONC. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and CIBERONC. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
12
|
Mohamed FAM, Gomaa HAM, Hendawy OM, Ali AT, Farghaly HS, Gouda AM, Abdelazeem AH, Abdelrahman MH, Trembleau L, Youssif BGM. Design, synthesis, and biological evaluation of novel EGFR inhibitors containing 5-chloro-3-hydroxymethyl-indole-2-carboxamide scaffold with apoptotic antiproliferative activity. Bioorg Chem 2021; 112:104960. [PMID: 34020242 DOI: 10.1016/j.bioorg.2021.104960] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
New EGFR inhibitor series of fifteen 5-chloro-3-hydroxymethyl-indole-2-carboxamide derivatives has been designed, synthesized, and tested for antiproliferative activity against a panel of cancer cell lines. The results showed that p-substituted phenethyl derivatives 10, 11, 13, 15 and 17-19 showed superior antiproliferative activity compared to their m-substituted counterparts 12, 14, 16 and 20. Compounds 15, 16, 19 and 20 displayed promising EGFR inhibitory activity as well as an increase in caspase 3 levels. Compounds 15 and 19 increased caspase-8 and 9 levels, as well as inducing Bax and decreasing Bcl-2 protein levels. Compound 19 demonstrated cell cycle arrest at pre-G1 and G2/M phases. The results of the docking study into the active site of EGFR revealed strong fitting of the new compounds with higher binding affinities compared to erlotinib.
Collapse
Affiliation(s)
- Fatma A M Mohamed
- Clinical Laboratory Science Department, College of Applied Medical Sciences, Jouf University, Aljouf 72341, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, Alexandria-21321, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - O M Hendawy
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Asmaa T Ali
- Biochemistry Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62511, Egypt
| | - Hatem S Farghaly
- Biochemistry Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62511, Egypt
| | - Ahmed M Gouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mostafa H Abdelrahman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB243UE, United Kingdom
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|