1
|
Zhuang X, Zhang X, Yin Q, Yang R, Man X, Wang R, Shi Y, Wang H, Jiang S. Causal pathways in Lymphoma: The role of serum metabolites and immune cells determined by Mendelian randomization. Int Immunopharmacol 2025; 144:113593. [PMID: 39591822 DOI: 10.1016/j.intimp.2024.113593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Prior research has demonstrated significant roles of metabolites and immune cells in the progression of lymphoma. Mendelian randomization studies have been conducted to assess the causal relationships among serum metabolites, immune cells, and lymphoma, further exploring the mediating role of serum metabolites. METHODS Using summary-level data from genome-wide association studies (GWAS), we applied two-sample Mendelian randomization (TSMR) techniques, including Inverse Variance Weighted (IVW), Weighted Median, MR-Egger, Simple Mode, and Weighted Mode. These methods were employed to examine the causal links between genetically determined serum metabolites, immune cells, and six types of lymphoma. Additionally, reverse MR analysis investigated reverse causality, and two-step MR quantified the proportion of lymphoma effects mediated by immune cells through serum metabolites. MR-Egger regression and leave-one-out sensitivity tests evaluated the stability and reliability of our findings. RESULTS The study pinpointed specific serum metabolites and immune cell types causally related to six lymphoma variants. Serum metabolites were identified as mediators in the relationship between immune cells and lymphoma. The two-step Mendelian randomization confirmed this mediated causal relationship, with sensitivity analyses supporting the results' reliability and lack of pleiotropy. CONCLUSION The study establishes a causal connection between immune cells and lymphoma, partially mediated by serum metabolites, although the majority of the influence remains undefined. Future research should explore additional potential mediators. Clinically, there should be an increased focus on immune cells biomarkers for lymphoma patients. These results offer valuable insights for identifying lymphoma biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Xin Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xia Zhang
- Qinghai Province Women and Children's Hospital, Xining, Qinghai, China
| | - Qingning Yin
- Qinghai Province Women and Children's Hospital, Xining, Qinghai, China
| | - Rong Yang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoying Man
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruochen Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifen Shi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Qinghai Province Women and Children's Hospital, Xining, Qinghai, China; Zhejiang Provincial Clinical Research Center For Hematological disorders, Wenzhou, China.
| | - Hailin Wang
- Qinghai Province Women and Children's Hospital, Xining, Qinghai, China.
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Enemark MH, Wolter K, Hybel TE, Andersen MD, Sørensen EF, Hindkaer LM, Lauridsen KL, Madsen C, Plesner TL, Hamilton-Dutoit S, Honoré B, Ludvigsen M. Differential tumor protein expression at follicular lymphoma diagnosis reveals dysregulation of key molecular pathways associated with histological transformation. Sci Rep 2024; 14:29962. [PMID: 39622932 PMCID: PMC11612490 DOI: 10.1038/s41598-024-81693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
Follicular lymphoma (FL) is the most common low-grade lymphoma. Despite its indolent nature, FL carries an inherent risk of histological transformation (HT) to a more aggressive lymphoma. Existing biomarkers are insufficient to predict HT, indicating the need for more robust biological predictors. Previously, we used mass spectrometry-based proteomics to identify differentially expressed proteins in diagnostic FLs with and without subsequent HT. This study sought to further investigate identified proteins in transformation of FL, generally acting in important cellular pathways such as (i) apoptosis (BID), (ii) cell cycle (CDC26, CDK6, SRSF1, SRSF2), (iii) GTPase signaling (IQGAP2, MEK1), (iv) cytoskeletal rearrangement and cellular migration (ACTB, CD11a, MMP9, SEPT6), and (v) immune processes (CD81, IgG, MPO, PIK3AP1). We analyzed pre-therapeutic samples from 48 FL patients, either non-transforming FL (nt-FL, n = 30) or subsequently-transforming FL (st-FL, n = 18), the latter with histologically-confirmed transformation after their initial FL diagnosis. Paired high-grade lymphomas (tFL, n = 18) from the time of transformation were also analyzed. We used immunohistochemistry and digital image analysis to quantify protein levels. In all five pathway classes, several proteins were differentially expressed between either the diagnostic nt-FL and st-FL samples, or between the paired st-FL and tFL samples (p < 0.05). Interestingly, we found correlation between expression levels of several proteins, indicating a complex involvement between several pathways. Differential expression of most proteins was also associated with shorter transformation-free survival (p < 0.05). These findings emphasize underlying differences in FL biology predictive of subsequent transformation, highlighting deregulation of important interconnected cellular pathways.
Collapse
Affiliation(s)
- Marie Hairing Enemark
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Katharina Wolter
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Trine Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Maja Dam Andersen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Emma Frasez Sørensen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Charlotte Madsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Enemark MH, Hemmingsen JK, Jensen ML, Kridel R, Ludvigsen M. Molecular Biomarkers in Prediction of High-Grade Transformation and Outcome in Patients with Follicular Lymphoma: A Comprehensive Systemic Review. Int J Mol Sci 2024; 25:11179. [PMID: 39456961 PMCID: PMC11508793 DOI: 10.3390/ijms252011179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Follicular lymphoma (FL) is the most prevalent indolent B-cell lymphoma entity, often characterized by the t(14;18) BCL2-IGH translocation. The malignancy represents a clinically and biologically highly heterogeneous disease. Most patients have favorable prognoses; however, despite therapeutic advancements, the disease remains incurable, with recurrent relapses or early disease progression. Moreover, transformation to an aggressive histology, most often diffuse large-B-cell lymphoma, remains a critical event in the disease course, which is associated with poor outcomes. Understanding the individual patient's risk of transformation remains challenging, which has motivated much research on novel biomarkers within the past four decades. This review systematically assessed the research on molecular biomarkers in FL transformation and outcome. Following the PRISMA guidelines for systemic reviews, the PubMed database was searched for English articles published from January 1984 through September 2024, yielding 6769 results. The identified publications were carefully screened and reviewed, of which 283 original papers met the inclusion criteria. The included studies focused on investigating molecular biomarkers as predictors of transformation or as prognostic markers of time-related endpoints (survival, progression, etc.). The effects of each biomarker were categorized based on their impact on prognosis or risk of transformation as none, favorable, or inferior. The biomarkers included genetic abnormalities, gene expression, microRNAs, markers of B cells/FL tumor cells, markers of the tumor microenvironment, and soluble biomarkers. This comprehensive review provides an overview of the research conducted in the past four decades, underscoring the persistent challenge in risk anticipation of FL patients.
Collapse
Affiliation(s)
- Marie Hairing Enemark
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.H.E.); (J.K.H.); (M.L.J.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Jonas Klejs Hemmingsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.H.E.); (J.K.H.); (M.L.J.)
| | - Maja Lund Jensen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.H.E.); (J.K.H.); (M.L.J.)
| | - Robert Kridel
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C4, Canada;
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.H.E.); (J.K.H.); (M.L.J.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Enemark MBH, Wolter K, Campbell AJ, Andersen MD, Sørensen EF, Hybel TE, Madsen C, Lauridsen KL, Plesner TL, Hamilton-Dutoit SJ, Honoré B, Ludvigsen M. Proteomics identifies apoptotic markers as predictors of histological transformation in patients with follicular lymphoma. Blood Adv 2023; 7:7418-7432. [PMID: 37824846 PMCID: PMC10758743 DOI: 10.1182/bloodadvances.2023011299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Follicular lymphoma (FL) is an indolent lymphoma with a generally favorable prognosis. However, histological transformation (HT) to a more aggressive disease leads to markedly inferior outcomes. This study aims to identify biological differences predictive of HT at the time of initial FL diagnosis. We show differential protein expression between diagnostic lymphoma samples from patients with subsequent HT (subsequently-transforming FL [st-FL]; n = 20) and patients without HT (nontransforming FL [nt-FL]; n = 34) by label-free quantification nano liquid chromatography-tandem mass spectrometry analysis. Protein profiles identified patients with high risk of HT. This was accompanied by disturbances in cellular pathways influencing apoptosis, the cytoskeleton, cell cycle, and immune processes. Comparisons between diagnostic st-FL samples and paired transformed FL (n = 20) samples demonstrated differential protein profiles and disrupted cellular pathways, indicating striking biological differences from the time of diagnosis up to HT. Immunohistochemical analysis of apoptotic proteins, CASP3, MCL1, BAX, BCL-xL, and BCL-rambo, confirmed higher expression levels in st-FL than in nt-FL samples (P < .001, P = .015, P = .003, P = .025, and P = .057, respectively). Moreover, all 5 markers were associated with shorter transformation-free survival (TFS; P < .001, P = .002, P < .001, P = .069, and P = .010, respectively). Notably, combining the expression of these proteins in a risk score revealed increasingly inferior TFS with an increasing number of positive markers. In conclusion, proteomics identified altered protein expression profiles (particularly apoptotic proteins) at the time of FL diagnosis, which predicted later transformation.
Collapse
Affiliation(s)
- Marie Beck Hairing Enemark
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Katharina Wolter
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Maja Dam Andersen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Trine Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Charlotte Madsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Enemark MBH, Sørensen EF, Hybel TE, Andersen MD, Madsen C, Lauridsen KL, Honoré B, d'Amore F, Plesner TL, Hamilton-Dutoit SJ, Ludvigsen M. IDO1 Protein Is Expressed in Diagnostic Biopsies from Both Follicular and Transformed Follicular Patients. Int J Mol Sci 2023; 24:ijms24087314. [PMID: 37108483 PMCID: PMC10139172 DOI: 10.3390/ijms24087314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Follicular lymphoma (FL) is a lymphoid neoplasia characterized by an indolent clinical nature. Despite generally favorable prognoses, early progression and histological transformation (HT) to a more aggressive lymphoma histology remain the leading causes of death among FL patients. To provide a basis for possible novel treatment options, we set out to evaluate the expression levels of indoleamine 2,3-dioxygenase 1 (IDO1), an immunoinhibitory checkpoint molecule, in follicular and transformed follicular biopsies. The expression levels of IDO1 were assessed using immunohistochemical staining and digital image analysis in lymphoma biopsies from 33 FL patients without subsequent HT (non-transforming FL, nt-FL) and 20 patients with subsequent HT (subsequently transforming FL, st-FL) as well as in paired high-grade biopsies from the time of HT (transformed FL, tFL). Despite no statistical difference in IDO1 expression levels seen between the groups, all diagnostic and transformed lymphomas exhibited positive expression, indicating its possible role in novel treatment regimens. In addition, IDO1 expression revealed a positive correlation with another immune checkpoint inhibitor, namely programmed death 1 (PD-1). In summary, we report IDO1 expression in all cases of FL and tFL, which provides the grounds for future investigations of anti-IDO1 therapy as a possible treatment for FL patients.
Collapse
Affiliation(s)
- Marie Beck Hairing Enemark
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Trine Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Maja Dam Andersen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Charlotte Madsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | | | - Bent Honoré
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Francesco d'Amore
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | | | | | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
6
|
Alfaifi A, Refai MY, Alsaadi M, Bahashwan S, Malhan H, Al-Kahiry W, Dammag E, Ageel A, Mahzary A, Albiheyri R, Almehdar H, Qadri I. Metabolomics: A New Era in the Diagnosis or Prognosis of B-Cell Non-Hodgkin's Lymphoma. Diagnostics (Basel) 2023; 13:diagnostics13050861. [PMID: 36900005 PMCID: PMC10000528 DOI: 10.3390/diagnostics13050861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
A wide range of histological as well as clinical properties are exhibited by B-cell non-Hodgkin's lymphomas. These properties could make the diagnostics process complicated. The diagnosis of lymphomas at an initial stage is essential because early remedial actions taken against destructive subtypes are commonly deliberated as successful and restorative. Therefore, better protective action is needed to improve the condition of those patients who are extensively affected by cancer when diagnosed for the first time. The development of new and efficient methods for early detection of cancer has become crucial nowadays. Biomarkers are urgently needed for diagnosing B-cell non-Hodgkin's lymphoma and assessing the severity of the disease and its prognosis. New possibilities are now open for diagnosing cancer with the help of metabolomics. The study of all the metabolites synthesised in the human body is called "metabolomics." A patient's phenotype is directly linked with metabolomics, which can help in providing some clinically beneficial biomarkers and is applied in the diagnostics of B-cell non-Hodgkin's lymphoma. In cancer research, it can analyse the cancerous metabolome to identify the metabolic biomarkers. This review provides an understanding of B-cell non-Hodgkin's lymphoma metabolism and its applications in medical diagnostics. A description of the workflow based on metabolomics is also provided, along with the benefits and drawbacks of various techniques. The use of predictive metabolic biomarkers for the diagnosis and prognosis of B-cell non-Hodgkin's lymphoma is also explored. Thus, we can say that abnormalities related to metabolic processes can occur in a vast range of B-cell non-Hodgkin's lymphomas. The metabolic biomarkers could only be discovered and identified as innovative therapeutic objects if we explored and researched them. In the near future, the innovations involving metabolomics could prove fruitful for predicting outcomes and bringing out novel remedial approaches.
Collapse
Affiliation(s)
- Abdullah Alfaifi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Fayfa General Hospital, Ministry of Health, Jazan 83581, Saudi Arabia
| | - Mohammed Y. Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Mohammed Alsaadi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salem Bahashwan
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Hematology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hafiz Malhan
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Waiel Al-Kahiry
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Enas Dammag
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Ageel Ageel
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Amjed Mahzary
- Eradah Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hussein Almehdar
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
7
|
Enemark MB, Hybel TE, Madsen C, Lauridsen KL, Honoré B, Plesner TL, Hamilton-Dutoit S, d’Amore F, Ludvigsen M. Tumor-Tissue Expression of the Hyaluronic Acid Receptor RHAMM Predicts Histological Transformation in Follicular Lymphoma Patients. Cancers (Basel) 2022; 14:cancers14051316. [PMID: 35267625 PMCID: PMC8909114 DOI: 10.3390/cancers14051316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Histological transformation (HT) remains the leading cause of mortality in follicular lymphoma (FL), underlining the need to identify reliable transformation predictors. The hyaluronic acid receptors CD44 and the receptor for hyaluronan mediated motility (RHAMM, also known as HMMR and CD168), have been shown to be involved in the pathogeneses of both solid tumors and hematological malignancies. In an attempt to improve risk stratification, expression of RHAMM and CD44 were evaluated by immunohistochemistry and digital image analysis in pre-therapeutic tumor-tissue biopsies from FL patients, either without (nt-FL, n = 34), or with (st-FL, n = 31) subsequent transformation, and in paired biopsies from the transformed lymphomas (tFL, n = 31). At the time of initial diagnosis, samples from st-FL patients had a higher expression of RHAMM compared with samples from nt-FL patients (p < 0.001). RHAMM expression further increased in tFL samples following transformation (p < 0.001). Evaluation of CD44 expression showed no differences in expression comparing nt-FL, st-FL, and tFL samples. Shorter transformation-free survival was associated with high tumoral and intrafollicular RHAMM expression, as well as with low intrafollicular CD44 expression (p = 0.002, p < 0.001, and p = 0.034, respectively). Our data suggest that high tumor-tissue RHAMM expression predicts the risk of shorter transformation-free survival in FL patients already at initial diagnosis.
Collapse
Affiliation(s)
- Marie Beck Enemark
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.E.); (T.E.H.); (C.M.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Trine Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.E.); (T.E.H.); (C.M.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Charlotte Madsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.E.); (T.E.H.); (C.M.); (F.d.)
| | | | - Bent Honoré
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | | | - Stephen Hamilton-Dutoit
- Department of Pathology, Aarhus University Hospital, 8000 Aarhus, Denmark; (K.L.L.); (S.H.-D.)
| | - Francesco d’Amore
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.E.); (T.E.H.); (C.M.); (F.d.)
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.E.); (T.E.H.); (C.M.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Correspondence: ; Tel.: +45-22859523
| |
Collapse
|
8
|
Serganova I, Chakraborty S, Yamshon S, Isshiki Y, Bucktrout R, Melnick A, Béguelin W, Zappasodi R. Epigenetic, Metabolic, and Immune Crosstalk in Germinal-Center-Derived B-Cell Lymphomas: Unveiling New Vulnerabilities for Rational Combination Therapies. Front Cell Dev Biol 2022; 9:805195. [PMID: 35071240 PMCID: PMC8777078 DOI: 10.3389/fcell.2021.805195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
B-cell non-Hodgkin lymphomas (B-NHLs) are highly heterogenous by genetic, phenotypic, and clinical appearance. Next-generation sequencing technologies and multi-dimensional data analyses have further refined the way these diseases can be more precisely classified by specific genomic, epigenomic, and transcriptomic characteristics. The molecular and genetic heterogeneity of B-NHLs may contribute to the poor outcome of some of these diseases, suggesting that more personalized precision-medicine approaches are needed for improved therapeutic efficacy. The germinal center (GC) B-cell like diffuse large B-cell lymphomas (GCB-DLBCLs) and follicular lymphomas (FLs) share specific epigenetic programs. These diseases often remain difficult to treat and surprisingly do not respond advanced immunotherapies, despite arising in secondary lymphoid organs at sites of antigen recognition. Epigenetic dysregulation is a hallmark of GCB-DLBCLs and FLs, with gain-of-function (GOF) mutations in the histone methyltransferase EZH2, loss-of-function (LOF) mutations in histone acetyl transferases CREBBP and EP300, and the histone methyltransferase KMT2D representing the most prevalent genetic lesions driving these diseases. These mutations have the common effect to disrupt the interactions between lymphoma cells and the immune microenvironment, via decreased antigen presentation and responsiveness to IFN-γ and CD40 signaling pathways. This indicates that immune evasion is a key step in GC B-cell lymphomagenesis. EZH2 inhibitors are now approved for the treatment of FL and selective HDAC3 inhibitors counteracting the effects of CREBBP LOF mutations are under development. These treatments can help restore the immune control of GCB lymphomas, and may represent optimal candidate agents for more effective combination with immunotherapies. Here, we review recent progress in understanding the impact of mutant chromatin modifiers on immune evasion in GCB lymphomas. We provide new insights on how the epigenetic program of these diseases may be regulated at the level of metabolism, discussing the role of metabolic intermediates as cofactors of epigenetic enzymes. In addition, lymphoma metabolic adaptation can negatively influence the immune microenvironment, further contributing to the development of immune cold tumors, poorly infiltrated by effector immune cells. Based on these findings, we discuss relevant candidate epigenetic/metabolic/immune targets for rational combination therapies to investigate as more effective precision-medicine approaches for GCB lymphomas.
Collapse
Affiliation(s)
- Inna Serganova
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sanjukta Chakraborty
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Samuel Yamshon
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Yusuke Isshiki
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Ryan Bucktrout
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Ari Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Wendy Béguelin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States.,Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
9
|
Holst JM, Enemark MB, Pedersen MB, Lauridsen KL, Hybel TE, Clausen MR, Frederiksen H, Møller MB, Nørgaard P, Plesner TL, Hamilton-Dutoit SJ, d’Amore F, Honoré B, Ludvigsen M. Proteomic Profiling Differentiates Lymphoma Patients with and without Concurrent Myeloproliferative Neoplasia. Cancers (Basel) 2021; 13:cancers13215526. [PMID: 34771688 PMCID: PMC8583469 DOI: 10.3390/cancers13215526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Patients are diagnosed with myeloproliferative neoplasia (MPN) and lymphoma more frequently in the population than expected, which has led to the hypothesis that the two malignancies may, in some cases, be pathogenetically related. In this study, lymphoma patients with and without MPN show subtle but important differences in the protein expression that enables the clustering of the lymphomas, thus indicating the differences at the molecular level between the lymphoma malignancies with and without MPN, and strengthening the hypothesis that the lymphoma and MPN may be biologically related. Abstract Myeloproliferative neoplasia (MPN) and lymphoma are regarded as distinct diseases with different pathogeneses. However, patients that are diagnosed with both malignancies occur more frequently in the population than expected. This has led to the hypothesis that the two malignancies may, in some cases, be pathogenetically related. Using a mass spectrometry-based proteomic approach, we show that pre-treatment lymphoma samples from patients with both MPN and lymphoma, either angioimmunoblastic T-cell lymphoma (MPN-AITL) or diffuse large B-cell lymphoma (MPN-DLBCL), show differences in protein expression compared with reference AITL or DLBCL samples from patients without MPN. A distinct clustering of samples from patients with and without MPN was evident for both AITL and DLBCL. Regarding MPN-AITL, a pathway analysis revealed disturbances of cellular respiration as well as oxidative metabolism, and an immunohistochemical evaluation further demonstrated the differential expression of citrate synthase and DNAJA2 protein (p = 0.007 and p = 0.015). Interestingly, IDH2 protein also showed differential expression in the MPN-AITL patients, which contributes to the growing evidence of this protein’s role in both myeloid neoplasia and AITL. In MPN-DLBCL, the disturbed pathways included a significant downregulation of protein synthesis as well as a perturbation of signal transduction. These results imply an underlying disturbance of tumor molecular biology, and in turn an alternative pathogenesis for tumors in these patients with both myeloid and lymphoid malignancies.
Collapse
Affiliation(s)
- Johanne Marie Holst
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (J.M.H.); (M.B.E.); (M.B.P.); (T.E.H.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Marie Beck Enemark
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (J.M.H.); (M.B.E.); (M.B.P.); (T.E.H.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Martin Bjerregaard Pedersen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (J.M.H.); (M.B.E.); (M.B.P.); (T.E.H.); (F.d.)
| | | | - Trine Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (J.M.H.); (M.B.E.); (M.B.P.); (T.E.H.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | | | - Henrik Frederiksen
- Department of Hematology, Odense University Hospital, 5000 Odense, Denmark;
| | - Michael Boe Møller
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark;
| | - Peter Nørgaard
- Department of Pathology, Herlev Hospital, 2730 Herlev, Denmark;
| | | | - Stephen Jacques Hamilton-Dutoit
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
- Department of Pathology, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | - Francesco d’Amore
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (J.M.H.); (M.B.E.); (M.B.P.); (T.E.H.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (J.M.H.); (M.B.E.); (M.B.P.); (T.E.H.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
- Correspondence: ; Tel.: +45-22859523
| |
Collapse
|
10
|
Metabolic Swifts Govern Normal and Malignant B Cell Lymphopoiesis. Int J Mol Sci 2021; 22:ijms22158269. [PMID: 34361035 PMCID: PMC8347747 DOI: 10.3390/ijms22158269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022] Open
Abstract
B lymphocytes are an indispensable part of the human immune system. They are the effective mediators of adaptive immunity and memory. To accomplish specificity against an antigen, and to establish the related immunologic memory, B cells differentiate through a complicated and strenuous training program that is characterized by multiple drastic genomic modifications. In order to avoid malignant transformation, these events are tightly regulated by multiple checkpoints, the vast majority of them involving bioenergetic alterations. Despite this stringent control program, B cell malignancies are amongst the top ten most common worldwide. In an effort to better understand malignant pathobiology, in this review, we summarize the metabolic swifts that govern normal B cell lymphopoiesis. We also review the existent knowledge regarding malignant metabolism as a means to unravel new research goals and/or therapeutic targets.
Collapse
|
11
|
Beck Enemark M, Monrad I, Madsen C, Lystlund Lauridsen K, Honoré B, Plesner TL, Hamilton-Dutoit SJ, d'Amore F, Ludvigsen M. PD-1 Expression in Pre-Treatment Follicular Lymphoma Predicts the Risk of Subsequent High-Grade Transformation. Onco Targets Ther 2021; 14:481-489. [PMID: 33500624 PMCID: PMC7822223 DOI: 10.2147/ott.s289337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Follicular lymphoma (FL) is an indolent, yet generally incurable neoplasia with a median survival exceeding 10 years. However, a subset of FL patients experiences histological transformation (HT) to a more aggressive lymphoma, in the majority of cases to diffuse large B-cell lymphoma (DLBCL). This affects both the clinical course and the prognostic outcome, resulting in a markedly reduced survival after transformation. Thus, early risk stratification and prediction of patients at risk of HT would be highly valuable in the clinical setting. Here, we investigated the potential of the immune inhibitory programmed death 1 (PD-1) receptor as a biomarker predictive of HT. Patients and Methods Immunohistochemical staining and quantification by digital image analysis of PD-1 was performed on diagnostic tumor-tissue samples from FL patients with and without subsequent transformation (n=34 and n=46, respectively), and on paired samples from the transformed lymphoma (n=34). Results At the time of initial FL diagnosis, samples from patients with subsequent HT had significantly higher tumor-tissue expression of PD-1 compared with diagnostic FL samples from patients without subsequent HT (p=0.010). At the time of transformation, PD-1 expression was significantly reduced (p<0.001). No difference was observed in intra-follicular PD-1 expression at FL diagnosis between samples from patients with or without HT; however, high intra-follicular levels of PD-1 were associated with significantly shorter transformation-free survival times (p<0.043). Conclusion Our data suggest that pre-treatment tumor-tissue PD-1 expression already predicts the risk of subsequent transformation to DLBCL, as early as the time of FL diagnosis.
Collapse
Affiliation(s)
- Marie Beck Enemark
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ida Monrad
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Charlotte Madsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Francesco d'Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Böttcher M, Baur R, Stoll A, Mackensen A, Mougiakakos D. Linking Immunoevasion and Metabolic Reprogramming in B-Cell-Derived Lymphomas. Front Oncol 2020; 10:594782. [PMID: 33251150 PMCID: PMC7674840 DOI: 10.3389/fonc.2020.594782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Lymphomas represent a diverse group of malignancies that emerge from lymphocytes. Despite improvements in diagnosis and treatment of lymphomas of B-cell origin, relapsed and refractory disease represents an unmet clinical need. Therefore, it is of utmost importance to better understand the lymphomas’ intrinsic features as well as the interactions with their cellular microenvironment for developing novel therapeutic strategies. In fact, the role of immune-based approaches is steadily increasing and involves amongst others the use of monoclonal antibodies against tumor antigens, inhibitors of immunological checkpoints, and even genetically modified T-cells. Metabolic reprogramming and immune escape both represent well established cancer hallmarks. Tumor metabolism as introduced by Otto Warburg in the early 20th century promotes survival, proliferation, and therapeutic resistance. Simultaneously, malignant cells employ a plethora of mechanisms to evade immune surveillance. Increasing evidence suggests that metabolic reprogramming does not only confer cell intrinsic growth and survival advantages to tumor cells but also impacts local as well as systemic anti-tumor immunity. Tumor and immune cells compete over nutrients such as carbohydrates or amino acids that are critical for the immune cell function. Moreover, skewed metabolic pathways in malignant cells can result in abundant production and release of bioactive metabolites such as lactic acid, kynurenine or reactive oxygen species (ROS) that affect immune cell fitness and function. This “metabolic re-modeling” of the tumor microenvironment shifts anti-tumor immune reactivity toward tolerance. Here, we will review molecular events leading to metabolic alterations in B-cell lymphomas and their impact on anti-tumor immunity.
Collapse
Affiliation(s)
- Martin Böttcher
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Rebecca Baur
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Andrej Stoll
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Mackensen
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|