1
|
Chen X, Watanabe T, Kubo N, Yunoki K, Matsumoto T, Kuwabara T, Sunagawa T, Date S, Mima T, Kirimoto H. Transient Modulation of Working Memory Performance and Event-Related Potentials by Transcranial Static Magnetic Field Stimulation over the Dorsolateral Prefrontal Cortex. Brain Sci 2021; 11:brainsci11060739. [PMID: 34199505 PMCID: PMC8228367 DOI: 10.3390/brainsci11060739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022] Open
Abstract
Transcranial static magnetic field stimulation (tSMS) can modulate human cortical excitability and behavior. To better understand the neuromodulatory effect of tSMS, this study investigates whether tSMS applied over the left dorsolateral prefrontal cortex (DLPFC) modulates working memory (WM) performance and its associated event-related potentials (ERPs). Thirteen healthy participants received tSMS or sham stimulation over the left DLPFC for 26 min on different days. The participants performed a 2-back version of the n-back task before, during (20 min after the start of stimulation), immediately after, and 15 min after the stimulation. We examine reaction time for correct responses, d-prime reflecting WM performance, and the N2 and P3 components of ERPs. Our results show that there was no effect of tSMS on reaction time. The d-prime was reduced, and the N2 latency was prolonged immediately after tSMS. These findings indicate that tSMS over the left DLPFC affects WM performance and its associated electrophysiological signals, which can be considered an important step toward a greater understanding of tSMS and its use in studies of higher-order cognitive processes.
Collapse
Affiliation(s)
- Xiaoxiao Chen
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (X.C.); (N.K.); (K.Y.); (T.M.); (T.K.); (H.K.)
| | - Tatsunori Watanabe
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (X.C.); (N.K.); (K.Y.); (T.M.); (T.K.); (H.K.)
- Correspondence:
| | - Nami Kubo
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (X.C.); (N.K.); (K.Y.); (T.M.); (T.K.); (H.K.)
| | - Keisuke Yunoki
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (X.C.); (N.K.); (K.Y.); (T.M.); (T.K.); (H.K.)
| | - Takuya Matsumoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (X.C.); (N.K.); (K.Y.); (T.M.); (T.K.); (H.K.)
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Takayuki Kuwabara
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (X.C.); (N.K.); (K.Y.); (T.M.); (T.K.); (H.K.)
| | - Toru Sunagawa
- Department of Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (T.S.); (S.D.)
| | - Shota Date
- Department of Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (T.S.); (S.D.)
| | - Tatsuya Mima
- Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto 603-8577, Japan;
| | - Hikari Kirimoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (X.C.); (N.K.); (K.Y.); (T.M.); (T.K.); (H.K.)
| |
Collapse
|
2
|
Null Effect of Transcranial Static Magnetic Field Stimulation over the Dorsolateral Prefrontal Cortex on Behavioral Performance in a Go/NoGo Task. Brain Sci 2021; 11:brainsci11040483. [PMID: 33920398 PMCID: PMC8069672 DOI: 10.3390/brainsci11040483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/01/2023] Open
Abstract
The purpose of this pilot study was to investigate whether transcranial static magnetic field stimulation (tSMS), which can modulate cortical excitability, would influence inhibitory control function when applied over the dorsolateral prefrontal cortex (DLPFC). Young healthy adults (n = 8, mean age ± SD = 24.4 ± 4.1, six females) received the following stimulations for 30 min on different days: (1) tSMS over the left DLPFC, (2) tSMS over the right DLPFC, and (3) sham stimulation over either the left or right DLPFC. The participants performed a Go/NoGo task before, immediately after, and 10 min after the stimulation. They were instructed to extend the right wrist in response to target stimuli. We recorded the electromyogram from the right wrist extensor muscles and analyzed erroneous responses (false alarm and missed target detection) and reaction times. As a result, 50% of the participants made erroneous responses, and there were five erroneous responses in total (0.003%). A series of statistical analyses revealed that tSMS did not affect the reaction time. These preliminary findings suggest the possibility that tSMS over the DLPFC is incapable of modulating inhibitory control and/or that the cognitive load imposed in this study was insufficient to detect the effect.
Collapse
|