1
|
Moniot A, Schneider C, Chardin L, Yaniz-Galende E, Genestie C, Etiennot M, Henry A, Drelon C, Le Formal A, Langlois B, Venat L, Louvet C, Favier L, Lortholary A, Berton-Rigaud D, Dohollou N, Desauw C, Fabbro M, Malaurie E, Dubot C, Kurtz JE, Bonichon Lamichhane N, Pujade-Lauraine É, Jeanne A, Leary A, Dedieu S. The CD47/TSP-1 axis: a promising avenue for ovarian cancer treatment and biomarker research. Mol Cancer 2024; 23:166. [PMID: 39138571 PMCID: PMC11323699 DOI: 10.1186/s12943-024-02073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) remains one of the most challenging and deadly malignancies facing women today. While PARP inhibitors (PARPis) have transformed the treatment landscape for women with advanced OC, many patients will relapse and the PARPi-resistant setting is an area of unmet medical need. Traditional immunotherapies targeting PD-1/PD-L1 have failed to show any benefit in OC. The CD47/TSP-1 axis may be relevant in OC. We aimed to describe changes in CD47 expression with platinum therapy and their relationship with immune features and prognosis. METHODS Tumor and blood samples collected from OC patients in the CHIVA trial were assessed for CD47 and TSP-1 before and after neoadjuvant chemotherapy (NACT) and multiplex analysis was used to investigate immune markers. Considering the therapeutic relevance of targeting the CD47/TSP-1 axis, we used the CD47-derived TAX2 peptide to selectively antagonize it in a preclinical model of aggressive ovarian carcinoma. RESULTS Significant reductions in CD47 expression were observed post NACT. Tumor patients having the highest CD47 expression profile at baseline showed the greatest CD4+ and CD8+ T-cell influx post NACT and displayed a better prognosis. In addition, TSP-1 plasma levels decreased significantly under NACT, and high TSP-1 was associated with a worse prognosis. We demonstrated that TAX2 exhibited a selective and favorable biodistribution profile in mice, localizing at the tumor sites. Using a relevant peritoneal carcinomatosis model displaying PARPi resistance, we demonstrated that post-olaparib (post-PARPi) administration of TAX2 significantly reduced tumor burden and prolonged survival. Remarkably, TAX2 used sequentially was also able to increase animal survival even under treatment conditions allowing olaparib efficacy. CONCLUSIONS Our study thus (1) proposes a CD47-based stratification of patients who may be most likely to benefit from postoperative immunotherapy, and (2) suggests that TAX2 is a potential alternative therapy for patients relapsing on PARP inhibitors.
Collapse
Affiliation(s)
| | | | - Laure Chardin
- Gustave-Roussy Cancer Campus Université Paris-Saclay GINECO/GINEGEPS, Inserm U981, Villejuif, France
| | - Elisa Yaniz-Galende
- Gustave-Roussy Cancer Campus Université Paris-Saclay GINECO/GINEGEPS, Inserm U981, Villejuif, France
| | - Catherine Genestie
- Gustave-Roussy Cancer Campus Université Paris-Saclay GINECO/GINEGEPS, Inserm U981, Villejuif, France
| | | | | | - Coralie Drelon
- UMR 7369 MEDyC, CNRS, Université de Reims Champagne-Ardenne, Reims, France
| | - Audrey Le Formal
- Gustave-Roussy Cancer Campus Université Paris-Saclay GINECO/GINEGEPS, Inserm U981, Villejuif, France
| | - Benoit Langlois
- UMR 7369 MEDyC, CNRS, Université de Reims Champagne-Ardenne, Reims, France
| | - Laurence Venat
- Centre Hospitalier Universitaire Dupuytren, Limoges, France
| | | | | | | | | | | | - Christophe Desauw
- Centre Hospitalier Régional Universitaire de Lille, Hôpital Huriez, Lille, France
| | | | | | - Coraline Dubot
- Institut Curie - Hôpital René Huguenin - GINECO, Saint-Cloud, France
| | | | | | | | | | - Alexandra Leary
- Gustave-Roussy Cancer Campus Université Paris-Saclay GINECO/GINEGEPS, Inserm U981, Villejuif, France
| | - Stéphane Dedieu
- UMR 7369 MEDyC, CNRS, Université de Reims Champagne-Ardenne, Reims, France.
| |
Collapse
|
2
|
Sun X, Zhang Y, Xin S, Jin L, Cao Q, Wang H, Wang K, Liu X, Tang C, Li W, Li Z, Wen X, Yang G, Guo C, Liu Z, Ye L. NOTCH3 promotes docetaxel resistance of prostate cancer cells through regulating TUBB3 and MAPK signaling pathway. Cancer Sci 2024; 115:412-426. [PMID: 38115797 PMCID: PMC10859609 DOI: 10.1111/cas.16040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Docetaxel is the preferred chemotherapeutic agent in patients with castrate-resistant prostate cancer (CRPC). However, patients eventually develop docetaxel resistance and in the absence of effective treatment options. Consequently, it is essential to investigate the mechanisms generating docetaxel resistance and develop novel alternative therapeutic targets. RNA sequencing was undertaken on docetaxel-sensitive and docetaxel-resistant prostate cancer (PCa) cells. Subsequently, chemoresistance, cancer stemness, and lipid metabolism were investigated. To obtain insight into the precise activities and action mechanisms of NOTCH3 in docetaxel-resistant PCa, immunoprecipitation, mass spectrometry, ChIP, luciferase reporter assay, cell metabolism, and animal experiments were performed. Through RNA sequencing analysis, we found that NOTCH3 expression was markedly higher in docetaxel-resistant cells relative to parental cells, and that this trend was continued in docetaxel-resistant PCa tissues. Experiments in vitro and in vivo revealed that NOTCH3 enhanced stemness, lipid metabolism, and docetaxel resistance in PCa. Mechanistically, NOTCH3 is bound to TUBB3 and activates the MAPK signaling pathway. Moreover, NOTCH3 was directly regulated by MEF2A in docetaxel-resistant cells. Notably, targeting NOTCH3 and the MEF2A/TUBB3 signaling axis was related to docetaxel chemoresistance in PCa. Overall, these results demonstrated that NOTCH3 fostered stemness, lipid metabolism, and docetaxel resistance in PCa via the TUBB3 and MAPK signaling pathways. Therefore, NOTCH3 may be employed as a prognostic biomarker in PCa patients. NOTCH3 could be a therapeutic target for PCa patients, particularly those who have developed docetaxel resistance.
Collapse
Affiliation(s)
- Xianchao Sun
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of UrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Ying Zhang
- Department of UrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Shiyong Xin
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Liang Jin
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qiong Cao
- Department of PathologyThe Third Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
| | - Hong Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiang Liu
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Chaozhi Tang
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Weiyi Li
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Ziyao Li
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiaofei Wen
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zhiyu Liu
- Department of UrologyThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
3
|
Iżycka N, Zaborowski MP, Ciecierski Ł, Jaz K, Szubert S, Miedziarek C, Rezler M, Piątek-Bajan K, Synakiewicz A, Jankowska A, Figlerowicz M, Sterzyńska K, Nowak-Markwitz E. Cancer Stem Cell Markers-Clinical Relevance and Prognostic Value in High-Grade Serous Ovarian Cancer (HGSOC) Based on The Cancer Genome Atlas Analysis. Int J Mol Sci 2023; 24:12746. [PMID: 37628927 PMCID: PMC10454196 DOI: 10.3390/ijms241612746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer stem cells (CSCs) may contribute to an increased risk of recurrence in ovarian cancer (OC). Further research is needed to identify associations between CSC markers and OC patients' clinical outcomes with greater certainty. If they prove to be correct, in the future, the CSC markers can be used to help predict survival and indicate new therapeutic targets. This study aimed to determine the CSC markers at mRNA and protein levels and their association with clinical presentation, outcome, and risk of recurrence in HGSOC (High-Grade Serous Ovarian Cancer). TCGA (The Cancer Genome Atlas) database with 558 ovarian cancer tumor samples was used for the evaluation of 13 CSC markers (ALDH1A1, CD44, EPCAM, KIT, LGR5, NES, NOTCH3, POU5F1, PROM1, PTTG1, ROR1, SOX9, and THY1). Data on mRNA and protein levels assessed by microarray and mass spectrometry were retrieved from TCGA. Models to predict chemotherapy response and survival were built using multiple variables, including epidemiological data, expression levels, and machine learning methodology. ALDH1A1 and LGR5 mRNA expressions indicated a higher platinum sensitivity (p = 3.50 × 10-3; p = 0.01, respectively). POU5F1 mRNA expression marked platinum-resistant tumors (p = 9.43 × 10-3). CD44 and EPCAM mRNA expression correlated with longer overall survival (OS) (p = 0.043; p = 0.039, respectively). THY1 mRNA and protein levels were associated with worse OS (p = 0.019; p = 0.015, respectively). Disease-free survival (DFS) was positively affected by EPCAM (p = 0.004), LGR5 (p = 0.018), and CD44 (p = 0.012). In the multivariate model based on CSC marker expression, the high-risk group had 9.1 months longer median overall survival than the low-risk group (p < 0.001). ALDH1A1, CD44, EPCAM, LGR5, POU5F1, and THY1 levels in OC may be used as prognostic factors for the primary outcome and help predict the treatment response.
Collapse
Affiliation(s)
- Natalia Iżycka
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Mikołaj Piotr Zaborowski
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland (M.F.)
| | - Łukasz Ciecierski
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland (M.F.)
| | - Kamila Jaz
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Sebastian Szubert
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Cezary Miedziarek
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Marta Rezler
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Kinga Piątek-Bajan
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Aneta Synakiewicz
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Anna Jankowska
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D St., 60-806 Poznan, Poland;
| | - Marek Figlerowicz
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland (M.F.)
| | - Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 61-781 Poznan, Poland
| | - Ewa Nowak-Markwitz
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| |
Collapse
|
4
|
Subedi S, Park YP. Single-cell pair-wise relationships untangled by composite embedding model. iScience 2023; 26:106025. [PMID: 36824286 PMCID: PMC9941206 DOI: 10.1016/j.isci.2023.106025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/24/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
In multicellular organisms, cell identity and functions are primed and refined through interactions with other surrounding cells. Here, we propose a scalable machine learning method, termed SPRUCE, which is designed to systematically ascertain common cell-cell communication patterns embedded in single-cell RNA-seq data. We applied our approach to investigate tumor microenvironments consolidating multiple breast cancer datasets and found seven frequently observed interaction signatures and underlying gene-gene interaction networks. Our results implicate that a part of tumor heterogeneity, especially within the same subtype, is better understood by differential interaction patterns rather than the static expression of known marker genes.
Collapse
Affiliation(s)
- Sishir Subedi
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, Canada
- BC Cancer Research, Part of Provincial Health Care Authority, Vancouver, BC, Canada
| | - Yongjin P. Park
- BC Cancer Research, Part of Provincial Health Care Authority, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Statistics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Zhu EY, Dupuy AJ. Machine learning approach informs biology of cancer drug response. BMC Bioinformatics 2022; 23:184. [PMID: 35581546 PMCID: PMC9112473 DOI: 10.1186/s12859-022-04720-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
Background The mechanism of action for most cancer drugs is not clear. Large-scale pharmacogenomic cancer cell line datasets offer a rich resource to obtain this knowledge. Here, we present an analysis strategy for revealing biological pathways that contribute to drug response using publicly available pharmacogenomic cancer cell line datasets. Methods We present a custom machine-learning based approach for identifying biological pathways involved in cancer drug response. We test the utility of our approach with a pan-cancer analysis of ML210, an inhibitor of GPX4, and a melanoma-focused analysis of inhibitors of BRAFV600. We apply our approach to reveal determinants of drug resistance to microtubule inhibitors. Results Our method implicated lipid metabolism and Rac1/cytoskeleton signaling in the context of ML210 and BRAF inhibitor response, respectively. These findings are consistent with current knowledge of how these drugs work. For microtubule inhibitors, our approach implicated Notch and Akt signaling as pathways that associated with response. Conclusions Our results demonstrate the utility of combining informed feature selection and machine learning algorithms in understanding cancer drug response. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04720-z.
Collapse
Affiliation(s)
- Eliot Y Zhu
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA.,Cancer Biology Graduate Program, The University of Iowa, Iowa City, IA, USA.,The Medical Scientist Training Program, The University of Iowa, Iowa City, IA, USA
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA. .,Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
6
|
Towner RA, Hocker J, Smith N, Saunders D, Battiste J, Hanas J. OKN-007 Alters Protein Expression Profiles in High-Grade Gliomas: Mass Spectral Analysis of Blood Sera. Brain Sci 2022; 12:brainsci12010100. [PMID: 35053843 PMCID: PMC8773900 DOI: 10.3390/brainsci12010100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
Current therapies for high-grade gliomas, particularly glioblastomas (GBM), do not extend patient survival beyond 16–22 months. OKN-007 (OKlahoma Nitrone 007), which is currently in phase II (multi-institutional) clinical trials for GBM patients, and has demonstrated efficacy in several rodent and human xenograft glioma models, shows some promise as an anti-glioma therapeutic, as it affects most aspects of tumorigenesis (tumor cell proliferation, angiogenesis, migration, and apoptosis). Combined with the chemotherapeutic agent temozolomide (TMZ), OKN-007 is even more effective by affecting chemo-resistant tumor cells. In this study, mass spectrometry (MS) methodology ESI-MS, mass peak analysis (Leave One Out Cross Validation (LOOCV) and tandem MS peptide sequence analyses), and bioinformatics analyses (Ingenuity® Pathway Analysis (IPA®)), were used to identify up- or down-regulated proteins in the blood sera of F98 glioma-bearing rats, that were either untreated or treated with OKN-007. Proteins of interest identified by tandem MS-MS that were decreased in sera from tumor-bearing rats that were either OKN-007-treated or untreated included ABCA2, ATP5B, CNTN2, ITGA3, KMT2D, MYCBP2, NOTCH3, and VCAN. Conversely, proteins of interest in tumor-bearing rats that were elevated following OKN-007 treatment included ABCA6, ADAMTS18, VWA8, MACF1, and LAMA5. These findings, in general, support our previous gene analysis, indicating that OKN-007 may be effective against the ECM. These findings also surmise that OKN-007 may be more effective against oligodendrogliomas, other brain tumors such as medulloblastoma, and possibly other types of cancers.
Collapse
Affiliation(s)
- Rheal A. Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (N.S.); (D.S.)
- Department of Neurosurgery, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Correspondence: (R.A.T.); (J.H.)
| | - James Hocker
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Correspondence: (R.A.T.); (J.H.)
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (N.S.); (D.S.)
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (N.S.); (D.S.)
| | - James Battiste
- Department of Neurosurgery, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Jay Hanas
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
7
|
Xiu M, Wang Y, Li B, Wang X, Xiao F, Chen S, Zhang L, Zhou B, Hua F. The Role of Notch3 Signaling in Cancer Stemness and Chemoresistance: Molecular Mechanisms and Targeting Strategies. Front Mol Biosci 2021; 8:694141. [PMID: 34195229 PMCID: PMC8237348 DOI: 10.3389/fmolb.2021.694141] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Aberrant Notch signaling profoundly affects cancer progression. Especially the Notch3 receptor was found to be dysregulated in cancer, where its expression is correlated with worse clinicopathological features and poor prognosis. The activation of Notch3 signaling is closely related to the activation of cancer stem cells (CSCs), a small subpopulation in cancer that is responsible for cancer progression. In addition, Notch3 signaling also contributes to tumor chemoresistance against several drugs, including doxorubicin, platinum, taxane, epidermal growth factor receptor (EGFR)–tyrosine kinase inhibitors (TKIs) and gemcitabine, through complex mechanisms. In this review, we mainly focus on discussing the molecular mechanisms by which Notch3 modulates cancer stemness and chemoresistance, as well as other cancer behaviors including metastasis and angiogenesis. What’s more, we propose potential treatment strategies to block Notch3 signaling, such as non-coding RNAs, antibodies and antibody-drug conjugates, providing a comprehensive reference for research on precise targeted cancer therapy.
Collapse
Affiliation(s)
- Mengxi Xiu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yongbo Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Baoli Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
8
|
Silva Raju J, Abd. Aziz NH, Atallah GA, Teik CK, Shafiee MN, Mohd Saleh MF, Jeganathan R, Md Zin RR, Kampan NC. Prognostic Value of TNFR2 and STAT3 among High-Grade Serous Ovarian Cancer Survivors According to Platinum Sensitivity. Diagnostics (Basel) 2021; 11:526. [PMID: 33809542 PMCID: PMC8000880 DOI: 10.3390/diagnostics11030526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/09/2021] [Indexed: 01/21/2023] Open
Abstract
This study's goal was to determine the protein expression level of tumour necrosis factor receptor 2 (TNFR2) and signal transducer and activator of transcription 3 (STAT3) in high-grade serous ovarian cancer (HGSC) tissues in relation to the platinum-based chemotherapy response and the prognosis outcome. A total of 25 HGSC patients underwent primary surgical debulking followed by first-line adjuvant platinum-based chemotherapy. Tissue microarray (TMA) slides were constructed utilising archived formalin fixed paraffin embedded (FFPE). The protein expression of TNFR2 and STAT3 were analysed using immunohistochemistry (IHC) staining and subsequently were correlated to the clinicopathological characteristics, platinum sensitivity as well as the duration of progression-free survival. About 14 out of 25 patients (56.0%) were platinum-sensitive. The progression free survival was significantly longer in the platinum-sensitive (PS) group when compared to those with the platinum-resistant group (PR), p = 0.0001. Among patients with TNFR2 strong expression on ovarian tissue, there was a significantly longer progression-free survival interval of 540 days in the PS group compared to PR, p = 0.0001. Patients with STAT3 expression also showed significantly better progression-free survival of 660 days in the PS group when compared to the PR group, p = 0.0001. In conclusion, patients with strong TNFR2 and STAT3 expression in the ovarian tissue had significantly longer progression-free survival interval in the PS group. Nevertheless, further research with a larger number of tissues may be required to demonstrate further significant differences.
Collapse
Affiliation(s)
- Janisha Silva Raju
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; (J.S.R.); (N.H.A.A.); (G.A.A.); (C.K.T.); (M.N.S.)
| | - Nor Haslinda Abd. Aziz
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; (J.S.R.); (N.H.A.A.); (G.A.A.); (C.K.T.); (M.N.S.)
| | - Ghofraan Abdulsalam Atallah
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; (J.S.R.); (N.H.A.A.); (G.A.A.); (C.K.T.); (M.N.S.)
| | - Chew Kah Teik
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; (J.S.R.); (N.H.A.A.); (G.A.A.); (C.K.T.); (M.N.S.)
| | - Mohamad Nasir Shafiee
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; (J.S.R.); (N.H.A.A.); (G.A.A.); (C.K.T.); (M.N.S.)
| | - Muhammad Fakhri Mohd Saleh
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; (M.F.M.S.); (R.R.M.Z.)
| | - Ravichandran Jeganathan
- Department of Obstetrics and Gynaecology, Hospital Sultanah Aminah Johor Bahru, Johor Bahru 80000, Malaysia;
| | - Reena Rahayu Md Zin
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; (M.F.M.S.); (R.R.M.Z.)
| | - Nirmala Chandralega Kampan
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; (J.S.R.); (N.H.A.A.); (G.A.A.); (C.K.T.); (M.N.S.)
| |
Collapse
|
9
|
Valmiki S, Aid MA, Chaitou AR, Zahid M, Valmiki M, Fawzy P, Khan S. Extracellular Matrix: A Treasure Trove in Ovarian Cancer Dissemination and Chemotherapeutic Resistance. Cureus 2021; 13:e13864. [PMID: 33859913 PMCID: PMC8038904 DOI: 10.7759/cureus.13864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Late presentation and resistance to chemotherapeutic agents make a deadly combination for ovarian cancer patients. The treatment of these patients is thus challenging. This study explores the possible molecular mechanisms by which tumor cells interact with the extracellular matrix (ECM) constituents, forming metastatic implants and enhancing patients' sensitivity to drugs. For the literature review, PubMed was used as a database. The standard search was done using keywords "collagen, ovarian cancer, extracellular matrix, drug resistance" in different combinations, which finally yielded 32 studies meeting the inclusion/exclusion criteria. The studies included were published in the English language in the past seven years. After analyzing, we found all of them to be histopathological studies. Nine studies also used murine cell lines besides human cell lines and tissue samples from ovarian cancer patients. One study has a retrospective analysis done. Eight studies demonstrate the role of hypoxia and matrix remodeling enzymes in ovarian cancer dissemination. Genetics playing a crucial role in cancer metastasis is demonstrated in eight studies. Ten studies included shows receptors, enzymes, and spheroid organization in disease progression. Six studies address chemotherapeutic resistance. Intraperitoneal dissemination of ovarian cancer and the development of chemotherapeutic resistance depends on certain molecular interactions, and they can be targeted to improve patients' overall survival.
Collapse
Affiliation(s)
- Surbhi Valmiki
- Obstetrics and Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mohamed A Aid
- Intensive Care Unit, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Intensive Care Unit, King Fahad Military Medical Complex, Jeddah, SAU
| | - Ali R Chaitou
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Internal Medicine, Faculty of Medical Sciences, Lebanese University, Beirut, LBN
| | - Maria Zahid
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mrinaal Valmiki
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Peter Fawzy
- Neurological Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|