1
|
Mai TC, Tran NT, Mai DT, Ngoc Mai TT, Thuc Duyen NH, Minh An TN, Alam M, Dang CH, Nguyen TD. Supercritical CO 2 assisted extraction of essential oil and naringin from Citrus grandis peel: in vitro antimicrobial activity and docking study. RSC Adv 2022; 12:25962-25976. [PMID: 36199614 PMCID: PMC9468803 DOI: 10.1039/d2ra04068a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
The extraction of bioactive compounds, including essential oils and flavonoids, using organic solvents is a significant environmental concern. In this work, waste C. grandis peel was the ingredient used to extract essential oil and naringin by conducting a supercritical CO2 technique with a two stage process. In the first stage, the extraction with only supercritical CO2 solvent showed a significant enhancement of the d-limonene component, up to 95.66% compared with the hydro-distillation extraction (87.60%). The extraction of naringin using supercritical CO2 and ethanol as a co-solvent was done in the second stage of the process, followed by evaluating in vitro antimicrobial activity of both the essential oil and naringin. The essential oil indicated significant activity against M. catarrhalis (0.25 mg ml-1), S. pyogenes (1.0 mg ml-1), S. pneumoniae (1.0 mg ml-1). Whilst naringin gave good inhibition towards all tested microbial strains with MIC values in the range of 6.25-25.0 μM. In particular, naringin exhibited high antifungal activity against T. rubrum, T. mentagrophytes, and M. gypseum. The molecular docking study also confirmed that d-limonene inhibited bacterium M. catarrhalis well and that naringin possessed potential ligand interactions that proved the inhibition effective against fungi. Molecular dynamics simulations of naringin demonstrated the best docking model using Gromacs during simulation up to 100 ns to explore the stability of the complex naringin and crystal structure of enzyme 2VF5: PDB.
Collapse
Affiliation(s)
- Thanh-Chi Mai
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A, TL29, District 12 Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Ngoc-Thinh Tran
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A, TL29, District 12 Ho Chi Minh City Vietnam
| | - Dinh-Tri Mai
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A, TL29, District 12 Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tran Thi Ngoc Mai
- Institute of Applied Sciences, HUTECH University 475A Dien Bien phu Street, Ward 25, Binh Thanh District Ho Chi Minh City Vietnam
| | - Nguyen Hong Thuc Duyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City Ho Chi Minh City 71420 Vietnam
| | - Tran Nguyen Minh An
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City Ho Chi Minh City 71420 Vietnam
| | - Mahboob Alam
- Department of Safety Engineering, Dongguk University 123 Dongdae-ro Gyeongju-si 780714 Gyeongsangbuk-do Republic of Korea
| | - Chi-Hien Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A, TL29, District 12 Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Thanh-Danh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A, TL29, District 12 Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
2
|
Dynamic Mechanism of Phase Variations in Bacteria Based on Multistable Gene Regulatory Networks. J Theor Biol 2022; 549:111212. [DOI: 10.1016/j.jtbi.2022.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022]
|
3
|
Janoušková M, Straw ML, Su YC, Riesbeck K. Gene Expression Regulation in Airway Pathogens: Importance for Otitis Media. Front Cell Infect Microbiol 2022; 12:826018. [PMID: 35252035 PMCID: PMC8895709 DOI: 10.3389/fcimb.2022.826018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Otitis media (OM) is an inflammatory disorder in the middle ear. It is mainly caused by viruses or bacteria associated with the airways. Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis are the three main pathogens in infection-related OM, especially in younger children. In this review, we will focus upon the multifaceted gene regulation mechanisms that are well-orchestrated in S. pneumoniae, H. influenzae, and M. catarrhalis during the course of infection in the middle ear either in experimental OM or in clinical settings. The sophisticated findings from the past 10 years on how the othopathogens govern their virulence phenotypes for survival and host adaptation via phase variation- and quorum sensing-dependent gene regulation, will be systematically discussed. Comprehensive understanding of gene expression regulation mechanisms employed by pathogens during the onset of OM may provide new insights for the design of a new generation of antimicrobial agents in the fight against bacterial pathogens while combating the serious emergence of antimicrobial resistance.
Collapse
|