1
|
Liu X, Zhou G, Chen S, Jia Z, Zhang S, He F, Ren M. Genome-wide analysis of the Tritipyrum NAC gene family and the response of TtNAC477 in salt tolerance. BMC PLANT BIOLOGY 2024; 24:40. [PMID: 38195389 PMCID: PMC10775630 DOI: 10.1186/s12870-023-04629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/23/2023] [Indexed: 01/11/2024]
Abstract
NAC transcription factors are widely distributed in the plant kingdom and play an important role in the response to various abiotic stresses in plant species. Tritipyrum, an octoploid derived from hybridization of Triticum aestivum (AABBDD) and Thinopyrum elongatum (EE), is an important genetic resource for integrating the desirable traits of Th. elongatum into wheat. In this study, we investigated the tissue distribution and expression of Tritipyrum NAC genes in the whole genomes of T. aestivum and Th. elongatum after obtaining their complete genome sequences. Based on phylogenetic relationships, conserved motifs, gene synthesis, evolutionary analysis, and expression patterns, we identified and characterized 732 Tritipyrum NAC genes. These genes were divided into six main groups (A, B, C, D, E, and G) based on phylogenetic relationships and evolutionary studies, with members of these groups sharing the same motif composition. The 732 TtNAC genes are widely distributed across 28 chromosomes and include 110 duplicated genes. Gene synthesis analysis indicated that the NAC gene family may have a common ancestor. Transcriptome data and quantitative polymerase chain reaction (qPCR) expression profiles showed 68 TtNAC genes to be highly expressed in response to various salt stress and recovery treatments. Tel3E01T644900 (TtNAC477) was particularly sensitive to salt stress and belongs to the same clade as the salt tolerance genes ANAC019 and ANAC055 in Arabidopsis. Pearson correlation analysis identified 751 genes that correlated positively with expression of TtNAC477, and these genes are enriched in metabolic activities, cellular processes, stimulus responses, and biological regulation. TtNAC477 was found to be highly expressed in roots, stems, and leaves in response to salt stress, as confirmed by real-time PCR. These findings suggest that TtNAC477 is associated with salt tolerance in plants and might serve as a valuable exogenous gene for enhancing salt tolerance in wheat.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Guangyi Zhou
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Songshu Chen
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Zhenzhen Jia
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Suqin Zhang
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Fang He
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Mingjian Ren
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Liu X, Zhou G, Chen S, Jia Z, Zhang S, Ren M, He F. Genome-wide analysis of the AP2/ERF gene family in Tritipyrum and the response of TtERF_B2-50 in salt-tolerance. BMC Genomics 2023; 24:541. [PMID: 37704958 PMCID: PMC10498623 DOI: 10.1186/s12864-023-09585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
The AP2/ERF transcription factor is widely distributed across the plant kingdom and plays a crucial role in various abiotic stress responses in plants. Tritipyrum, an octoploid resulting from an intergeneric cross between Triticum aestivum (AABBDD) and Thinopyrum elongatum (EE), is a valuable source of germplasm for incorporating superior traits of Th. elongatum into T. aestivum. With the recent availability of whole -genome sequences for T. aestivum and Th. elongatum, we explored the organization and expression profiling of Tritipyrum AP2/ERF genes across the entire genome. Our investigation identified 543 Tritipyrum AP2/ERF genes, which evolutionary analysis categorized into four major groups (AP2, DREB, ERF, and RAV), whose members share a conserved motif composition. These 543 TtAP2/ERF genes were distributed throughout 28 chromosomes, with 132 duplications. Synteny analysis suggests that the AP2/ERF gene family may have a common ancestor. Transcriptome data and Real-Time PCR expression profiles revealed 43 TtAP2/ERF genes with high expression levels in response to various salt stressors and recovery regimens. Tel2E01T236300 (TtERF_B2-50) was particularly salt stress-sensitive and evolutionarily related to the salt-tolerant gene AtERF7 in A. thaliana. Pearson correlation analysis identified 689 genes positively correlated (R > 0.9) with TtERF_B2-50 expression, enriched in metabolic activities, cellular processes, stimulus response, and biological regulation. Real-time PCR showed that TtERF_B2-50 was highly expressed in roots, stems, and leaves under salt stress. These findings suggest that TtERF_B2-50 may be associated with salt stress tolerance and may serve as a valuable foreign gene for enhancing salt tolerance in wheat.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Guizhou Subcenter of National Wheat Improvement Center, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Guangyi Zhou
- Guizhou Subcenter of National Wheat Improvement Center, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Songshu Chen
- Guizhou Subcenter of National Wheat Improvement Center, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Zhenzhen Jia
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Suqin Zhang
- Guizhou Subcenter of National Wheat Improvement Center, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Mingjian Ren
- Guizhou Subcenter of National Wheat Improvement Center, Agronomy College, Guizhou University, Guiyang, 550025, China.
| | - Fang He
- Guizhou Subcenter of National Wheat Improvement Center, Agronomy College, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Koziol L, Bever JD. Crop Productivity Boosters: Native Mycorrhizal Fungi from an Old-Growth Grassland Benefits Tomato ( Solanum lycopersicum) and Pepper ( Capsicum annuum) Varieties in Organically Farmed Soils. Microorganisms 2023; 11:2012. [PMID: 37630572 PMCID: PMC10457834 DOI: 10.3390/microorganisms11082012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
This paper investigates the response of five tomato and five pepper varieties to native arbuscular mycorrhizal (AM) fungal inoculation in an organic farming system. The field experiment was conducted across a growing season at a working organic farm in Lawrence, KS, USA. The researchers hypothesized that native AM fungi inoculation would improve crop biomass production for both crop species, but that the magnitude of response would depend on crop cultivar. The results showed that both crops were significantly positively affected by inoculation. AM fungal inoculation consistently improved total pepper biomass throughout the experiment (range of +2% to +8% depending on the harvest date), with a +3.7% improvement at the final harvest for inoculated plants. An interaction between pepper variety and inoculation treatment was sometimes observed, indicating that some pepper varieties were more responsive to AM fungi than others. Beginning at the first harvest, tomatoes showed a consistent positive response to AM fungal inoculation among varieties. Across the experiment, AM fungi-inoculated tomatoes had +10% greater fruit biomass, which was driven by a +20% increase in fruit number. The study highlights the potential benefits of using native AM fungi as a soil amendment in organic farmed soils to improve pepper and tomato productivity.
Collapse
Affiliation(s)
- Liz Koziol
- Kansas Biological Station and Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66047, USA
| | | |
Collapse
|
4
|
Li K, Liu X, He F, Chen S, Zhou G, Wang Y, Li L, Zhang S, Ren M, Yuan Y. Genome-wide analysis of the Tritipyrum WRKY gene family and the response of TtWRKY256 in salt-tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1042078. [PMID: 36589069 PMCID: PMC9795024 DOI: 10.3389/fpls.2022.1042078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The transcription factor WRKY is widespread in the plant kingdom and plays a crucial role in diverse abiotic stress responses in plant species. Tritipyrum, an octoploid derived from an intergeneric cross between Triticum aestivum (AABBDD) and Thinopyrum elongatum (EE), is a valuable germplasm resource for introducing superior traits of Th. elongatum into T. aestivum. The recent release of the complete genome sequences of T. aestivum and Th. elongatum enabled us to investigate the organization and expression profiling of Tritipyrum WRKY genes across the entire genome. RESULTS In this study, 346 WRKY genes, from TtWRKY1 to TtWRKY346, were identified in Tritipyrum. The phylogenetic analysis grouped these genes into three subfamilies (I-III), and members of the same subfamilies shared a conserved motif composition. The 346 TtWRKY genes were dispersed unevenly across 28 chromosomes, with 218 duplicates. Analysis of synteny suggests that the WRKY gene family may have a common ancestor. Expression profiles derived from transcriptome data and qPCR demonstrated that 54 TtWRKY genes exhibited relatively high levels of expression across various salt stresses and recovery treatments. Tel1E01T143800 (TtWRKY256) is extremely sensitive to salt stress and is on the same evolutionary branch as the salt-tolerant A. thaliana genes AtWRKY25 and AtWRKY33. From 'Y1805', the novel AtWRKY25 was cloned. The Pearson correlation analysis identified 181 genes that were positively correlated (R>0.9) with the expression of TtWRKY256, and these genes were mainly enriched in metabolic processes, cellular processes, response to stimulus, biological regulation, and regulation of biological. Subcellular localization and qRT-PCR analysis revealed that TtWRKY256 was located in the nucleus and was highly expressed in roots, stems, and leaves under salt stress. DISCUSSION The above results suggest that TtWRKY256 may be associated with salt stress tolerance in plants and may be a valuable alien gene for improving salt tolerance in wheat.
Collapse
Affiliation(s)
- Kuiyin Li
- Guizhou Subcenter of National Wheat Improvement Center, College of Agronomy, Guizhou University, Guiyang, China
- Anshun University, Anshun, China
| | - Xiaojuan Liu
- Guizhou Subcenter of National Wheat Improvement Center, College of Agronomy, Guizhou University, Guiyang, China
| | - Fang He
- Guizhou Subcenter of National Wheat Improvement Center, College of Agronomy, Guizhou University, Guiyang, China
| | - Songshu Chen
- Guizhou Subcenter of National Wheat Improvement Center, College of Agronomy, Guizhou University, Guiyang, China
| | - Guangyi Zhou
- Guizhou Subcenter of National Wheat Improvement Center, College of Agronomy, Guizhou University, Guiyang, China
| | | | - Luhua Li
- Guizhou Subcenter of National Wheat Improvement Center, College of Agronomy, Guizhou University, Guiyang, China
| | - Suqin Zhang
- Guizhou Subcenter of National Wheat Improvement Center, College of Agronomy, Guizhou University, Guiyang, China
| | - Mingjian Ren
- Guizhou Subcenter of National Wheat Improvement Center, College of Agronomy, Guizhou University, Guiyang, China
| | - Yuanyuan Yuan
- Jinan Academy of Agricultural Sciences, Jinan, China
- Yantai Academy of Agricultural Sciences, Yantai, China
| |
Collapse
|
5
|
Transgenic Improvement for Biotic Resistance of Crops. Int J Mol Sci 2022; 23:ijms232214370. [PMID: 36430848 PMCID: PMC9697442 DOI: 10.3390/ijms232214370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Biotic constraints, including pathogenic fungi, viruses and bacteria, herbivory insects, as well as parasitic nematodes, cause significant yield loss and quality deterioration of crops. The effect of conventional management of these biotic constraints is limited. The advances in transgenic technologies provide a direct and directional approach to improve crops for biotic resistance. More than a hundred transgenic events and hundreds of cultivars resistant to herbivory insects, pathogenic viruses, and fungi have been developed by the heterologous expression of exogenous genes and RNAi, authorized for cultivation and market, and resulted in a significant reduction in yield loss and quality deterioration. However, the exploration of transgenic improvement for resistance to bacteria and nematodes by overexpression of endogenous genes and RNAi remains at the testing stage. Recent advances in RNAi and CRISPR/Cas technologies open up possibilities to improve the resistance of crops to pathogenic bacteria and plant parasitic nematodes, as well as other biotic constraints.
Collapse
|
6
|
Zhou J, Wilson GWT, Cobb AB, Zhang Y, Liu L, Zhang X, Sun F. Mycorrhizal and rhizobial interactions influence model grassland plant community structure and productivity. MYCORRHIZA 2022; 32:15-32. [PMID: 35037106 DOI: 10.1007/s00572-021-01061-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/24/2021] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi and rhizobium are likely important drivers of plant coexistence and grassland productivity due to complementary roles in supplying limiting nutrients. However, the interactive effects of mycorrhizal and rhizobial associations on plant community productivity and competitive dynamics remain unclear. To address this, we conducted a greenhouse experiment to determine the influences of these key microbial functional groups on communities comprising three plant species by comparing plant communities grown with or without each symbiont. We also utilized N-fertilization and clipping treatments to explore potential shifts in mycorrhizal and rhizobial benefits across abiotic and biotic conditions. Our research suggests AM fungi and rhizobium co-inoculation was strongly facilitative for plant community productivity and legume (Medicago sativa) growth and nodulation. Plant competitiveness shifted in the presence of AM fungi and rhizobium, favoring M. sativa over a neighboring C4 grass (Andropogon gerardii) and C3 forb (Ratibida pinnata). This may be due to rhizobial symbiosis as well as the relatively greater mycorrhizal growth response of M. sativa, compared to the other model plants. Clipping and N-fertilization altered relative costs and benefits of both symbioses, presumably by altering host-plant nitrogen and carbon dynamics, leading to a relative decrease in mycorrhizal responsiveness and proportional biomass of M. sativa relative to the total biomass of the entire plant community, with a concomitant relative increase in A. gerardii and R. pinnata proportional biomass. Our results demonstrate a strong influence of both microbial symbioses on host-plant competitiveness and community dynamics across clipping and N-fertilization treatments, suggesting the symbiotic rhizosphere community is critical for legume establishment in grasslands.
Collapse
Affiliation(s)
- Jiqiong Zhou
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China.
| | - Gail W T Wilson
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, 008C AGH74078, USA
| | - Adam B Cobb
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, 008C AGH74078, USA
| | - Yingjun Zhang
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
| | - Lin Liu
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinquan Zhang
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Feida Sun
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|