1
|
Townsend PH, Jones A, Patel AD, Race E. Rhythmic Temporal Cues Coordinate Cross-frequency Phase-amplitude Coupling during Memory Encoding. J Cogn Neurosci 2024; 36:2100-2116. [PMID: 38991125 DOI: 10.1162/jocn_a_02217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Accumulating evidence suggests that rhythmic temporal cues in the environment influence the encoding of information into long-term memory. Here, we test the hypothesis that these mnemonic effects of rhythm reflect the coupling of high-frequency (gamma) oscillations to entrained lower-frequency oscillations synchronized to the beat of the rhythm. In Study 1, we first test this hypothesis in the context of global effects of rhythm on memory, when memory is superior for visual stimuli presented in rhythmic compared with arrhythmic patterns at encoding [Jones, A., & Ward, E. V. Rhythmic temporal structure at encoding enhances recognition memory, Journal of Cognitive Neuroscience, 31, 1549-1562, 2019]. We found that rhythmic presentation of visual stimuli during encoding was associated with greater phase-amplitude coupling (PAC) between entrained low-frequency (delta) oscillations and higher-frequency (gamma) oscillations. In Study 2, we next investigated cross-frequency PAC in the context of local effects of rhythm on memory encoding, when memory is superior for visual stimuli presented in-synchrony compared with out-of-synchrony with a background auditory beat [Hickey, P., Merseal, H., Patel, A. D., & Race, E. Memory in time: Neural tracking of low-frequency rhythm dynamically modulates memory formation. Neuroimage, 213, 116693, 2020]. We found that the mnemonic effect of rhythm in this context was again associated with increased cross-frequency PAC between entrained low-frequency (delta) oscillations and higher-frequency (gamma) oscillations. Furthermore, the magnitude of gamma power modulations positively scaled with the subsequent memory benefit for in- versus out-of-synchrony stimuli. Together, these results suggest that the influence of rhythm on memory encoding may reflect the temporal coordination of higher-frequency gamma activity by entrained low-frequency oscillations.
Collapse
Affiliation(s)
- Paige Hickey Townsend
- Massachusetts General Hospital, Charlestown, MA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
| | | | - Aniruddh D Patel
- Tufts University, Medford, MA
- Canadian Institute for Advanced Research
| | | |
Collapse
|
2
|
Zhou H, Yan W, Xu J, Ma Y, Zuo G, Shi C. Allocation of cognitive resources in cognitive processing of rhythmic visual stimuli before gait-related motor initiation. Front Neurosci 2023; 17:1145051. [PMID: 37250401 PMCID: PMC10213455 DOI: 10.3389/fnins.2023.1145051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
Rhythmic visual cues can affect the allocation of cognitive resources during gait initiation (GI) and motor preparation. However, it is unclear how the input of rhythmic visual information modulates the allocation of cognitive resources and affects GI. The purpose of this study was to explore the effect of rhythmic visual cues on the dynamic allocation of cognitive resources by recording electroencephalographic (EEG) activity during exposure to visual stimuli. This study assessed event-related potentials (ERPs), event-related synchronization/desynchronization (ERS/ERD), and EEG microstates at 32 electrodes during presentation of non-rhythmic and rhythmic visual stimuli in 20 healthy participants. The ERP results showed that the amplitude of the C1 component was positive under exposure to rhythmic visual stimuli, while the amplitude of the N1 component was higher under exposure to rhythmic visual stimuli compared to their non-rhythmic counterparts. Within the first 200 ms of the onset of rhythmic visual stimuli, ERS in the theta band was highly pronounced in all brain regions analyzed. The results of microstate analysis showed that rhythmic visual stimuli were associated with an increase in cognitive processing over time, while non-rhythmic visual stimuli were associated with a decrease. Overall, these findings indicated that, under exposure to rhythmic visual stimuli, consumption of cognitive resources is lower during the first 200 ms of visual cognitive processing, but the consumption of cognitive resources gradually increases over time. After approximately 300 ms, cognitive processing of rhythmic visual stimuli consumes more cognitive resources than processing of stimuli in the non-rhythmic condition. This indicates that the former is more conducive to the completion of gait-related motor preparation activities, based on processing of rhythmic visual information during the later stages. This finding indicates that the dynamic allocation of cognitive resources is the key to improving gait-related movement based on rhythmic visual cues.
Collapse
Affiliation(s)
- Huilin Zhou
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Wenfeng Yan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, China
| | - Jialin Xu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Yehao Ma
- Robotics Institute, Ningbo University of Technology, Ningbo, Zhejiang, China
| | - Guokun Zuo
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Changcheng Shi
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Effects of phase synchronization and frequency specificity in the encoding of conditioned fear-a web-based fear conditioning study. PLoS One 2023; 18:e0281644. [PMID: 36867619 PMCID: PMC9983861 DOI: 10.1371/journal.pone.0281644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/30/2023] [Indexed: 03/04/2023] Open
Abstract
Oscillatory synchronization in the theta-frequency band was found to play a causal role in binding information of different modalities in declarative memory. Moreover, there is first evidence from a laboratory study that theta-synchronized (vs. asynchronized) multimodal input in a classical fear conditioning paradigm resulted in better discrimination of a threat-associated stimulus when compared to perceptually similar stimuli never associated with the aversive unconditioned stimulus (US). Effects manifested in affective ratings and ratings of contingency knowledge. However, theta-specificity was not addressed so far. Thus, in the present pre-registered web-based fear conditioning study, we compared synchronized (vs. asynchronized) input in a theta-frequency band vs. the same synchronization manipulation in a delta frequency. Based on our previous laboratory design, five visual gratings of different orientations (25°, 35°, 45°, 55°, 65°) served as conditioned stimuli (CS) with only one (CS+) paired with the auditory aversive US. Both CS and US were luminance or amplitude modulated, respectively, in a theta (4 Hz) or delta (1.7 Hz) frequency. In both frequencies, CS-US pairings were presented either in-phase (0° phase lag) or out-of-phase (90°, 180°, 270°), resulting in four independent groups (each group N = 40). Phase synchronization augmented the discrimination of CSs in CS-US contingency knowledge but did not affect valence and arousal ratings. Interestingly, this effect occurred independent of frequency. In sum, the current study proves the ability to successfully conduct complex generalization fear conditioning in an online setting. Based on this prerequisite, our data supports a causal role of phase synchronization in the declarative CS-US associations for low frequencies rather than in the specific theta-frequency band.
Collapse
|
4
|
Jones A, Ward EV, Csiszer EL, Szymczak J. Temporal Expectation Improves Recognition Memory for Spatially Attended Objects. J Cogn Neurosci 2022; 34:1616-1629. [PMID: 35604350 DOI: 10.1162/jocn_a_01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Recent evidence suggests that temporal expectation is beneficial to memory formation. Rhythmic presentation of stimuli during encoding enhances subsequent recognition and is associated with distinct neural activity compared with when stimuli are presented in an arrhythmic manner. However, no prior study has examined how temporal expectation interacts with another important form of facilitation-spatial attention-to affect memory. This study systematically manipulated temporal expectation and spatial attention during encoding to examine their combined effect on behavioral recognition and associated ERPs. Participants performed eight experimental blocks consisting of an encoding phase and recognition test, with EEG recorded throughout. During encoding, pairs of objects and checkerboards were presented and participants were cued to attend to the left or right stream and detect targets as quickly as possible. In four blocks, stimulus presentation followed a rhythmic (constant, predictable) temporal structure, and in the other four blocks, stimulus onset was arrhythmic (random, unpredictable). An interaction between temporal expectation and spatial attention emerged, with greater recognition in the rhythmic than the arrhythmic condition for spatially attended items. Analysis of memory-specific ERP components uncovered effects of spatial attention. There were late positive component and FN400 old/new effects in the attended condition for both rhythmic and arrhythmic items, whereas in the unattended condition, there was an FN400 old/new effect and no late positive component effect. The study provides new evidence that memory improvement as a function of temporal expectation is dependent upon spatial attention.
Collapse
Affiliation(s)
| | - Emma V Ward
- Middlesex University, London, United Kingdom
| | | | | |
Collapse
|
5
|
Riding the slow wave: Exploring the role of entrained low-frequency oscillations in memory formation. Neuropsychologia 2021; 160:107962. [PMID: 34284040 DOI: 10.1016/j.neuropsychologia.2021.107962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/01/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022]
Abstract
Neural oscillations are proposed to support a variety of behaviors, including long-term memory, yet their functional significance remains an active area of research. Here, we explore a potential functional role of low-frequency cortical oscillations in episodic memory formation. Recent theories suggest that low-frequency oscillations orchestrate rhythmic attentional sampling of the environment by dynamically modulating neural excitability across time. When these oscillations entrain to low-frequency rhythms present in the environment, such as speech or music, the brain can build temporal predictions about the onset of relevant events so that these events can be more efficiently processed. Building upon this literature, we propose that entrained low-frequency oscillations may similarly influence the temporal dynamics of episodic memory by rhythmically modulating encoding across time (mnemonic sampling). Central to this proposal is the phenomenon of cross-frequency phase-amplitude coupling, whereby the amplitudes of faster (higher frequency) rhythms, such as gamma oscillations, couple to the phase of slower (lower-frequency) rhythms entrained to environmental stimuli. By imposing temporal structure on higher-frequency oscillatory activity previously linked to memory formation, entrained low-frequency oscillations could dynamically orchestrate memory formation and optimize encoding at specific moments in time. We discuss prior experimental and theoretical work relevant to this proposal.
Collapse
|