1
|
Pang Y, Peng Z, Ding K. An in-depth review: Unraveling the extraction, structure, bio-functionalities, target molecules, and applications of pectic polysaccharides. Carbohydr Polym 2024; 343:122457. [PMID: 39174094 DOI: 10.1016/j.carbpol.2024.122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Pectic polysaccharides have long been a challenging subject of research in the field of macromolecular science, given their complex structures and wide range of biological effects. However, the extensive exploration of pectic polysaccharides has been limited due to the intricacy of their structures. In this comprehensive review, we aim to provide a thorough summary of the existing knowledge on pectic polysaccharides, with a particular focus on aspects such as classification, extraction methodologies, structural analysis, elucidation of biological activities, and exploration of target molecules and signaling pathways. By conducting a comprehensive analysis of existing literature and research achievements, we strive to establish a comprehensive and systematic framework that can serve as a reference and guide for further investigations into pectic polysaccharides. Furthermore, this review delves into the applications of pectic polysaccharides beyond their fundamental attributes and characteristics, exploring their potential in fields such as materials, food, and pharmaceuticals. We pay special attention to the promising opportunities for pectic polysaccharides in the pharmaceutical domain and provide an overview of related drug development research. The aim of this review is to facilitate a holistic understanding of pectic polysaccharides by incorporating multifaceted research, providing valuable insights for further in-depth investigations into this significant polymer.
Collapse
Affiliation(s)
- Yunrui Pang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Zhigang Peng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; China School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Kan Ding
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
2
|
Tajik E, Vaezi Z, Tabarsa M, Hekmat A, Naderi-Manesh H. Grafting of sinapic acid onto glucosamine nanoparticle as a potential therapeutic drug with enhanced anti-inflammatory activities in osteoarthritis treatment. Int J Biol Macromol 2023; 253:127454. [PMID: 37844822 DOI: 10.1016/j.ijbiomac.2023.127454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Glucosamine (Glu) is a cartilage and joint fluid matrix precursor that modulates osteoarthritic joint changes. To improve the enzymatic stability, glucosamine was developed into nanoglucosamine by the ionic gelation method through sodium tripolyphosphate (TPP) as cross-linking agent. The optimized mass ratio of Glu:TPP was (3:1) with the particle size 163 ± 25 nm and surface charge -5 mV. Then Sinapic acid (SA) as a natural phenolic acid with strong antioxidant and antimicrobial activities has been grafted onto glucosamine nanoparticles (GluNPs) with grafting efficiency (73 ± 6 %). The covalent insertion of SA was confirmed by UV-Vis, FTIR, 1HNMR, XRD, and FESEM analyses and the other physicochemical properties were also characterized. SA-g-GluNPs showed spherical shape with a mean diameter of 255 ± 20 nm and zeta potential +16 mV. The in vitro release profile of SA-g-GluNPs exhibited the sustained and pH-dependent drug release property. SA-g-GluNPs had a more pronounced effect on reducing the elevated levels of LPS-induced oxidative stress and pro-inflammatory cytokines than free SA in the human chondrocyte C28/I2 cell line. Furthermore, the antibacterial properties against E. coli and S. aureus were also improved by SA-g-GluNPs. This study demonstrated the potential of phenolic acid grafted GluNPs in therapeutic drug applications for chondroprotection and food industries.
Collapse
Affiliation(s)
- Ehteram Tajik
- Department of Biophysics, Science and Research branch, Islamic Azad University, Tehran, Iran
| | - Zahra Vaezi
- Department of Bioactive Compounds, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Tabarsa
- Department of Bioactive Compounds, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran; Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Azadeh Hekmat
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Hossein Naderi-Manesh
- Department of Bioactive Compounds, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran; Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Postal codes: 14115-154 Tehran, Iran.
| |
Collapse
|
3
|
Picot-Allain MCN, Neergheen VS. Pectin a multifaceted biopolymer in the management of cancer: A review. Heliyon 2023; 9:e22236. [PMID: 38058641 PMCID: PMC10696011 DOI: 10.1016/j.heliyon.2023.e22236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023] Open
Abstract
This review article focuses on the multifaceted roles of pectin in cancer management, namely as an oncotherapeutic delivery vehicle and a pharmacological agent. Over the past decades, the potential of pectin as a novel therapeutical agent for the prevention and/or management of cancer has gained increasing interest. Pectin has been found to modulate different mechanisms involved in the onset and progression of carcinogenesis, such as galectin-3 inhibition, caspase-3-induced apoptosis, and autophagy. Elucidating the structure-activity relationship provides insight into the relationship between the structure of pectin and different mechanism/s. The bioactivity of pectin, with respect to its structure, was critically discussed to give a better insight of the relationship between the structure of the extracted pectin and the observed bioactive effects. The rhamnogalacturonan I part of the pectin chain was found to bind to galectin-3, associated with several cancer hallmarks. The anti-inflammatory and antioxidant potential of pectin were also described. The roles of pectin as a treatment enhancer and a drug delivery vehicle for oncotherapeutics were critically defined. The scientific findings presented in this paper are expected to highlight the potential and role of pectin recovered from various plant sources in preventing and managing cancer.
Collapse
Affiliation(s)
- Marie Carene Nancy Picot-Allain
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit 80837, Mauritius
- Future Africa, University of Pretoria, South Africa
| | - Vidushi Shradha Neergheen
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit 80837, Mauritius
| |
Collapse
|
4
|
Patlay AA, Belousov AS, Silant’ev VE, Shatilov RA, Shmelev ME, Kovalev VV, Perminova IV, Baklanov IN, Kumeiko VV. Preparation and Characterization of Hydrogel Films and Nanoparticles Based on Low-Esterified Pectin for Anticancer Applications. Polymers (Basel) 2023; 15:3280. [PMID: 37571174 PMCID: PMC10422365 DOI: 10.3390/polym15153280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Prospective adjuvant anticancer therapy development includes the establishing of drug delivery systems based on biocompatible and biodegradable carriers. We have designed films and nanoparticles (NPs) based on low-esterified pectin hydrogel using the ionic gelation method. We investigated morphology, nanomechanical properties, biocompatibility and anticancer activity. Hydrogel films are characterized by tunable viscoelastic properties and surface nanoarchitectonics through pectin concentration and esterification degree (DE), expressed in variable pore frequency and diameter. An in vitro study showed a significant reduction in metabolic activity and the proliferation of the U87MG human glioblastoma cell line, probably affected via the adhesion mechanism. Glioma cells formed neurosphere-like conglomerates with a small number of neurites when cultured on fully de-esterified pectin films and they did not produce neurites on the films prepared on 50% esterified pectin. Pectin NPs were examined in terms of size distribution and nanomechanical properties. The NPs' shapes were proved spherical with a mean diameter varying in the range of 90-115 nm, and a negative zeta potential from -8.30 to -7.86 mV, which indicated their stability. The NPs did not demonstrate toxic effect on cells or metabolism inhibition, indicating good biocompatibility. Nanostructured biomaterials prepared on low-esterified pectins could be of interest for biomedical applications in adjuvant anticancer therapy and for designing drug delivery systems.
Collapse
Affiliation(s)
- Aleksandra A. Patlay
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
| | - Andrei S. Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
| | - Vladimir E. Silant’ev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
- Laboratory of Electrochemical Processes, Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Roman A. Shatilov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
| | - Mikhail E. Shmelev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
| | - Valeri V. Kovalev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Irina V. Perminova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia;
| | - Ivan N. Baklanov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Vadim V. Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| |
Collapse
|
5
|
Kedir WM, Deresa EM, Diriba TF. Pharmaceutical and drug delivery applications of pectin and its modified nanocomposites. Heliyon 2022; 8:e10654. [PMID: 36164543 PMCID: PMC9508417 DOI: 10.1016/j.heliyon.2022.e10654] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/29/2022] [Accepted: 09/09/2022] [Indexed: 10/27/2022] Open
Abstract
Due to their natural availability, biocompatibility, biodegradability, nontoxicity, flexibility, as well as improved structural and functional characteristics, pectin and pectin-based nanocomposites have become an interesting area of numerous researchers. Pectin is a polysaccharide that comes from plants and is used in a variety of products. The significance of pectin polysaccharide and its modified nanocomposites in a number of applications has been shown in numerous reviews. On their uses in pharmaceutical and medication delivery, there are, however, few review publications. The majority of papers on pectin polysaccharide do not structure their explanations of drug distribution and medicinal application. The biological application of pectin nanocomposite is also explained in this review, along with a recent publication. As a result, the goal of this review was in-depth analysis to summarize biological application of pectin and its modified nanocomposites. Due to their exceptional physicochemical and biological characteristics, pectin and its nanocomposites are remarkable materials for medicinal applications. In addition to enhancing the immune system, controlling blood cholesterol, and other things, they have been shown to have anticancer, antidiabetic, antioxidant, anti-inflammatory, immunomodulatory, and antibacterial properties. Because of their biocompatibility and properties that allow for regulated release, they have also received a lot of interest as drug carriers in targeted drug delivery systems. They have been used to administer medications to treat cancer, inflammation, pain, Alzheimer's, bacteria, and relax muscles. This review found that pectin and its derivatives have better drug delivery efficiency and are viable candidates for a wide range of medicinal applications. It has been advised to conduct further research on the subject of toxicity in order to produce commercial formulations that can serve as both therapeutic agents and drug carriers.
Collapse
Affiliation(s)
- Welela Meka Kedir
- Department of Chemistry, College of Natural and Computational Sciences, Mattu University, Mattu, Ethiopia
| | - Ebisa Mirete Deresa
- Department of Chemistry, College of Natural Sciences, Jimma University, Jimma, Ethiopia
| | - Tamiru Fayisa Diriba
- Department of Chemistry, College of Natural Sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
6
|
Pairoj S, Damrongsak P, Damrongsak B, Jinawath N, Kaewkhaw R, Ruttanasirawit C, Leelawattananon T, Locharoenrat K. Antitumor activities of carboplatin-doxorubicin-ZnO complexes in different human cancer cell lines (breast, cervix uteri, colon, liver and oral) under UV exposition. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:120-135. [PMID: 33491496 DOI: 10.1080/21691401.2021.1876718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/10/2021] [Indexed: 01/01/2023]
Abstract
This study aimed to examine the pharmacological profiles of multiple chemo drug candidates in systematic circulation to enhance their specific interactions with five human cancer cell lines. ZnO nanoparticles were successfully bound with chemo drugs via physical adsorption. The drug loading capacity was confirmed by FTIR, whereas the loading efficiency was determined via UV-vis spectrometry. The mean hydrodynamic size increased to 69-82 nm after chemo-drug immobilization via non-covalent interaction with ZnO. Among the nine formulated chemo drugs, the carboplatin (CP)-doxorubicin (DOX)-ZnO complex under UV light irradiation exhibited high sensitivity towards human breast adenocarcinoma cells without affecting human keratinocyte immortal cells with an IC50 of 0.137 µg/mL, whereas the loading capacity and efficiency of CP-DOX-ZnO were 77.81% and 99.05%, respectively. Fluorescence images confirmed that CP-DOX-ZnO using DOX served as a fluorescence enhancer specifically bound onto the cell membranes, which became almost saturated after 24 h incubation. Carboplatin-DOX-ZnO was possibly endocytosed by cancer cells and was selectively internalized into the target cells; thus, free chemo drug was released in the cytoplasm, which induced acute apoptosis. This resulted in complete inhabitation of growth signal of target cancer cells.
Collapse
Affiliation(s)
- Suttirak Pairoj
- Department of Physics, Faculty of Science, Biomedical Physics Research Unit, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Pattareeya Damrongsak
- Department of Physics, Faculty of Science, Biomedical Physics Research Unit, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Badin Damrongsak
- Department of Physics, Faculty of Science, Silpakorn University, Nakornpathom, Thailand
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Bangkok, Thailand
| | - Rossukon Kaewkhaw
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Bangkok, Thailand
| | - Chinnapat Ruttanasirawit
- Department of Physics, Faculty of Science, Biomedical Physics Research Unit, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Tanaporn Leelawattananon
- Department of Physics, Faculty of Science, Biomedical Physics Research Unit, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Kitsakorn Locharoenrat
- Department of Physics, Faculty of Science, Biomedical Physics Research Unit, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| |
Collapse
|
7
|
Structure and Applications of Pectin in Food, Biomedical, and Pharmaceutical Industry: A Review. COATINGS 2021. [DOI: 10.3390/coatings11080922] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pectin is a biocompatible polysaccharide with intrinsic biological activity, which may exhibit different structures depending on its source or extraction method. The extraction of pectin from various industrial by-products presents itself as a green option for the valorization of agro-industrial residues by producing a high commercial value product. Pectin is susceptible to physical, chemical, and/or enzymatic changes. The numerous functional groups present in its structure can stimulate different functionalities, and certain modifications can enable pectin for countless applications in food, agriculture, drugs, and biomedicine. It is currently a trend to use pectin to produce edible coating to protect foodstuff, antimicrobial bio-based films, nanoparticles, healing agents, and cancer treatment. Advances in methodology, use of different sources of extraction, and knowledge about structural modification have significantly expanded the properties, yields, and applications of this polysaccharide. Recently, structurally modified pectin has shown better functional properties and bioactivities than the native one. In addition, pectin can be used in conjunction with a wide variety of biopolymers with differentiated properties and specific functionalities. In this context, this review presents the structural characteristics and properties of pectin and information on the modification of this polysaccharide, its respective applications, perspectives, and future challenges.
Collapse
|
8
|
Jain P, Kathuria H, Momin M. Clinical therapies and nano drug delivery systems for urinary bladder cancer. Pharmacol Ther 2021; 226:107871. [PMID: 33915179 DOI: 10.1016/j.pharmthera.2021.107871] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Bladder cancer is the 10th most commonly occurring malignancy worldwide with a 75% of 5-year survival rate, while it ranks 13th among the deaths occurring due to cancer. The majority of bladder cancer cases are diagnosed at an early stage and 70% are of non-invasive grade. However, 70% of these cases develop chemoresistance and progress to the muscle invasive stage. Conventional chemotherapy treatments are unsuccessful in curbing chemoresistance, bladder cancer progression while having an adverse side effect, which is mainly due to off-target drug distribution. Therefore, new drug delivery strategies, new therapeutics and therapies or their combination are being explored to develop better treatments. In this regard, nanotechnology has shown promise in the targeted delivery of therapeutics to bladder cancer cells. This review discusses the recent discovery of new therapeutics (chemotherapeutics, immunotherapeutic, and gene therapies), recent developments in the delivery of therapeutics using nano drug delivery systems, and the combination treatments with FDA-approved therapies, i.e., hyperthermia and photodynamic therapy. We also discussed the potential of other novel drug delivery systems that are minimally explored in bladder cancer. Lastly, we discussed the clinical status of therapeutics and therapies for bladder cancer. Overall, this review can provide a summary of available treatments for bladder cancer, and also provide opportunities for further development of drug delivery systems for better management of bladder cancer.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India.
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, Singapore 117543, Republic of Singapore; Nusmetic Pvt Ltd, Makerspace, i4 building, 3 Research Link Singapore, 117602, Republic of Singapore.
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India.
| |
Collapse
|